Amico Enrico, Arenas Alex, Goñi Joaquín
School of Industrial Engineering, Purdue University, West-Lafayette, IN, USA.
Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Tarragona, Spain.
Netw Neurosci. 2019 Feb 1;3(2):455-474. doi: 10.1162/netn_a_00072. eCollection 2019.
A key question in modern neuroscience is how cognitive changes in a human brain can be quantified and captured by functional connectivity (FC). A systematic approach to measure pairwise functional distance at different brain states is lacking. This would provide a straightforward way to quantify differences in cognitive processing across tasks; also, it would help in relating these differences in task-based FCs to the underlying structural network. Here we propose a framework, based on the concept of Jensen-Shannon divergence, to map the task-rest connectivity distance between tasks and resting-state FC. We show how this information theoretical measure allows for quantifying connectivity changes in distributed and centralized processing in functional networks. We study resting state and seven tasks from the Human Connectome Project dataset to obtain the most distant links across tasks. We investigate how these changes are associated with different functional brain networks, and use the proposed measure to infer changes in the information-processing regimes. Furthermore, we show how the FC distance from resting state is shaped by structural connectivity, and to what extent this relationship depends on the task. This framework provides a well-grounded mathematical quantification of connectivity changes associated with cognitive processing in large-scale brain networks.
现代神经科学中的一个关键问题是,人类大脑中的认知变化如何通过功能连接(FC)进行量化和捕捉。目前缺乏一种在不同脑状态下测量成对功能距离的系统方法。这将提供一种直接的方式来量化不同任务间认知处理的差异;此外,它将有助于将基于任务的功能连接差异与潜在的结构网络联系起来。在此,我们基于 Jensen-Shannon 散度的概念提出一个框架,以映射任务与静息态功能连接之间的任务-静息连接距离。我们展示了这种信息理论度量如何能够量化功能网络中分布式和集中式处理中的连接变化。我们研究了人类连接组计划数据集中的静息态和七个任务,以获取不同任务间最远的连接。我们研究这些变化如何与不同的功能性脑网络相关联,并使用所提出的度量来推断信息处理模式的变化。此外,我们展示了静息态功能连接距离如何受结构连接的影响,以及这种关系在多大程度上依赖于任务。该框架为大规模脑网络中与认知处理相关的连接变化提供了坚实的数学量化。