人类大脑功能的高阶连接组学揭示了任务解码、个体识别和行为的局部拓扑特征。

Higher-order connectomics of human brain function reveals local topological signatures of task decoding, individual identification, and behavior.

机构信息

Neuro-X Institute, EPFL, Geneva, Switzerland.

CENTAI, Turin, Italy.

出版信息

Nat Commun. 2024 Nov 26;15(1):10244. doi: 10.1038/s41467-024-54472-y.

Abstract

Traditional models of human brain activity often represent it as a network of pairwise interactions between brain regions. Going beyond this limitation, recent approaches have been proposed to infer higher-order interactions from temporal brain signals involving three or more regions. However, to this day it remains unclear whether methods based on inferred higher-order interactions outperform traditional pairwise ones for the analysis of fMRI data. To address this question, we conducted a comprehensive analysis using fMRI time series of 100 unrelated subjects from the Human Connectome Project. We show that higher-order approaches greatly enhance our ability to decode dynamically between various tasks, to improve the individual identification of unimodal and transmodal functional subsystems, and to strengthen significantly the associations between brain activity and behavior. Overall, our approach sheds new light on the higher-order organization of fMRI time series, improving the characterization of dynamic group dependencies in rest and tasks, and revealing a vast space of unexplored structures within human functional brain data, which may remain hidden when using traditional pairwise approaches.

摘要

传统的人类大脑活动模型通常将其表示为大脑区域之间的两两相互作用网络。为了超越这一限制,最近提出了一些方法,从涉及三个或更多区域的时间大脑信号中推断高阶相互作用。然而,时至今日,基于推断高阶相互作用的方法是否优于传统的两两方法来分析 fMRI 数据仍不清楚。为了解决这个问题,我们使用来自人类连接组计划的 100 个无关主体的 fMRI 时间序列进行了全面分析。我们表明,高阶方法极大地提高了我们在各种任务之间动态解码的能力,提高了单模态和跨模态功能子系统的个体识别能力,并显著增强了大脑活动与行为之间的关联。总的来说,我们的方法为 fMRI 时间序列的高阶组织提供了新的视角,改善了静息和任务状态下动态组依赖关系的特征描述,并揭示了人类功能脑数据中大量未被探索的结构空间,而使用传统的两两方法可能会隐藏这些结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19b1/11599762/cca9906c0b32/41467_2024_54472_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索