Suppr超能文献

结构化低秩矩阵分解:全局最优性、算法及应用

Structured Low-Rank Matrix Factorization: Global Optimality, Algorithms, and Applications.

作者信息

Haeffele Benjamin D, Vidal Rene

出版信息

IEEE Trans Pattern Anal Mach Intell. 2020 Jun;42(6):1468-1482. doi: 10.1109/TPAMI.2019.2900306. Epub 2019 Feb 19.

Abstract

Convex formulations of low-rank matrix factorization problems have received considerable attention in machine learning. However, such formulations often require solving for a matrix of the size of the data matrix, making it challenging to apply them to large scale datasets. Moreover, in many applications the data can display structures beyond simply being low-rank, e.g., images and videos present complex spatio-temporal structures that are largely ignored by standard low-rank methods. In this paper we study a matrix factorization technique that is suitable for large datasets and captures additional structure in the factors by using a particular form of regularization that includes well-known regularizers such as total variation and the nuclear norm as particular cases. Although the resulting optimization problem is non-convex, we show that if the size of the factors is large enough, under certain conditions, any local minimizer for the factors yields a global minimizer. A few practical algorithms are also provided to solve the matrix factorization problem, and bounds on the distance from a given approximate solution of the optimization problem to the global optimum are derived. Examples in neural calcium imaging video segmentation and hyperspectral compressed recovery show the advantages of our approach on high-dimensional datasets.

摘要

低秩矩阵分解问题的凸形式在机器学习中受到了广泛关注。然而,这种形式通常需要求解一个与数据矩阵大小相同的矩阵,这使得将它们应用于大规模数据集具有挑战性。此外,在许多应用中,数据可能呈现出超越简单低秩的结构,例如,图像和视频呈现出复杂的时空结构,而标准的低秩方法在很大程度上忽略了这些结构。在本文中,我们研究了一种矩阵分解技术,该技术适用于大型数据集,并通过使用一种特殊形式的正则化来捕捉因子中的额外结构,这种正则化包括总变差和核范数等著名的正则化器作为特殊情况。尽管由此产生的优化问题是非凸的,但我们表明,如果因子的大小足够大,在某些条件下,因子的任何局部极小值都会产生全局极小值。我们还提供了一些实用算法来解决矩阵分解问题,并推导了从优化问题的给定近似解到全局最优解的距离的界。神经钙成像视频分割和高光谱压缩恢复的例子展示了我们的方法在高维数据集上的优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验