IEEE Trans Image Process. 2022;31:3509-3524. doi: 10.1109/TIP.2022.3171414. Epub 2022 May 18.
Optical imaging of calcium signals in the brain has enabled researchers to observe the activity of hundreds-to-thousands of individual neurons simultaneously. Current methods predominantly use morphological information, typically focusing on expected shapes of cell bodies, to better identify neurons in the field-of-view. The explicit shape constraints limit the applicability of automated cell identification to other important imaging scales with more complex morphologies, e.g., dendritic or widefield imaging. Specifically, fluorescing components may be broken up, incompletely found, or merged in ways that do not accurately describe the underlying neural activity. Here we present Graph Filtered Temporal Dictionary (GraFT), a new approach that frames the problem of isolating independent fluorescing components as a dictionary learning problem. Specifically, we focus on the time-traces-the main quantity used in scientific discovery-and learn a time trace dictionary with the spatial maps acting as the presence coefficients encoding which pixels the time-traces are active in. Furthermore, we present a novel graph filtering model which redefines connectivity between pixels in terms of their shared temporal activity, rather than spatial proximity. This model greatly eases the ability of our method to handle data with complex non-local spatial structure. We demonstrate important properties of our method, such as robustness to morphology, simultaneously detecting different neuronal types, and implicitly inferring number of neurons, on both synthetic data and real data examples. Specifically, we demonstrate applications of our method to calcium imaging both at the dendritic, somatic, and widefield scales.
脑钙信号的光学成像使研究人员能够同时观察数百到数千个单个神经元的活动。目前的方法主要使用形态学信息,通常侧重于细胞体的预期形状,以更好地识别视野中的神经元。明确的形状约束将自动细胞识别的适用性限制在具有更复杂形态的其他重要成像尺度上,例如树突或宽场成像。具体来说,荧光成分可能会被打断、无法完全找到或合并,从而无法准确描述潜在的神经活动。在这里,我们提出了图滤波时频字典(Graph Filtered Temporal Dictionary,GraFT),这是一种新方法,将分离独立荧光成分的问题表述为字典学习问题。具体来说,我们专注于时间轨迹——这是科学发现中主要使用的量,并学习一个时间轨迹字典,其中空间图作为存在系数进行编码,这些存在系数编码哪些像素是时间轨迹活跃的。此外,我们提出了一种新的图滤波模型,该模型根据其共享的时间活动重新定义像素之间的连接,而不是空间邻近度。该模型极大地简化了我们的方法处理具有复杂非局部空间结构的数据的能力。我们在合成数据和真实数据示例上展示了我们方法的重要性质,例如对形态的鲁棒性、同时检测不同神经元类型以及隐式推断神经元数量。具体来说,我们展示了我们的方法在树突、体部和宽场尺度钙成像中的应用。