Division of Global HIV and TB, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America.
Division of Global HIV and TB, U.S. Centers for Disease Control and Prevention, Pretoria, Republic of South Africa.
PLoS One. 2019 Feb 22;14(2):e0212445. doi: 10.1371/journal.pone.0212445. eCollection 2019.
Many countries, including South Africa, have implemented population-based household surveys to estimate HIV prevalence and the burden of HIV infection. Most household HIV surveys are designed to provide reliable estimates down to only the first subnational geopolitical level which, in South Africa, is composed of nine provinces. However HIV prevalence estimates are needed down to at least the second subnational level in order to better target the delivery of HIV care, treatment and prevention services. The second subnational level in South Africa is composed of 52 districts. Achieving adequate precision at the second subnational level therefore requires either a substantial increase in survey sample size or use of model-based estimation capable of incorporating other pre-existing data. Our purpose is demonstration of the efficacy of relatively simple small-area estimation of HIV prevalence in the 52 districts of South Africa using data from the South African National HIV Prevalence, Incidence and Behavior Survey, 2012, district-level HIV prevalence estimates obtained from testing of pregnant women who attended antenatal care (ANC) clinics in 2012, and 2012 demographic data. The best-fitting model included only ANC prevalence and dependency ratio as out-of-survey predictors. Our key finding is that ANC prevalence was the superior auxiliary covariate, and provided substantially improved precision in many district-level estimates of HIV prevalence in the general population. Inclusion of a district-level spatial simultaneously autoregressive covariance structure did not result in improved estimation.
许多国家,包括南非,已经实施了基于人口的家庭调查来估计 HIV 的流行率和 HIV 感染的负担。大多数家庭 HIV 调查旨在提供可靠的估计,仅能达到第一个国家以下的地缘政治级别,在南非,由九个省份组成。然而,为了更好地针对 HIV 护理、治疗和预防服务的提供,需要至少到第二个国家以下的级别进行 HIV 流行率的估计。南非的第二个国家以下的级别由 52 个区组成。为了在第二个国家以下的级别实现足够的精度,要么需要大幅增加调查样本量,要么使用能够结合其他现有数据的基于模型的估计方法。我们的目的是利用 2012 年南非全国 HIV 流行率、发病率和行为调查的数据、2012 年接受产前保健 (ANC) 诊所检查的孕妇检测的区一级 HIV 流行率估计值以及 2012 年人口数据,展示在南非 52 个区中使用相对简单的小区域 HIV 流行率估计的效果。最佳拟合模型仅包括 ANC 流行率和依赖比作为调查外预测因子。我们的主要发现是,ANC 流行率是更好的辅助协变量,在许多人群的区一级 HIV 流行率估计中提供了大大提高的精度。纳入区一级空间同时自回归协方差结构并没有导致更好的估计。
BMC Public Health. 2006-4-2
Medicine (Baltimore). 2021-7-16
J Acquir Immune Defic Syndr Hum Retrovirol. 1997-9-1
Wiley Interdiscip Rev Comput Stat. 2024
Ther Adv Infect Dis. 2023-2-18
Int Stat Rev. 2020-8
Popul Health Metr. 2022-2-19
Int J Environ Res Public Health. 2021-12-9
Int J Environ Res Public Health. 2021-10-26
PLoS One. 2015-3-26
PLoS One. 2014-7-25
Int J Epidemiol. 2012-11-12