文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用小区域估计技术改进南非地区艾滋病毒流行率和负担的估计。

Improving estimates of district HIV prevalence and burden in South Africa using small area estimation techniques.

机构信息

Division of Global HIV and TB, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America.

Division of Global HIV and TB, U.S. Centers for Disease Control and Prevention, Pretoria, Republic of South Africa.

出版信息

PLoS One. 2019 Feb 22;14(2):e0212445. doi: 10.1371/journal.pone.0212445. eCollection 2019.


DOI:10.1371/journal.pone.0212445
PMID:30794619
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6386240/
Abstract

Many countries, including South Africa, have implemented population-based household surveys to estimate HIV prevalence and the burden of HIV infection. Most household HIV surveys are designed to provide reliable estimates down to only the first subnational geopolitical level which, in South Africa, is composed of nine provinces. However HIV prevalence estimates are needed down to at least the second subnational level in order to better target the delivery of HIV care, treatment and prevention services. The second subnational level in South Africa is composed of 52 districts. Achieving adequate precision at the second subnational level therefore requires either a substantial increase in survey sample size or use of model-based estimation capable of incorporating other pre-existing data. Our purpose is demonstration of the efficacy of relatively simple small-area estimation of HIV prevalence in the 52 districts of South Africa using data from the South African National HIV Prevalence, Incidence and Behavior Survey, 2012, district-level HIV prevalence estimates obtained from testing of pregnant women who attended antenatal care (ANC) clinics in 2012, and 2012 demographic data. The best-fitting model included only ANC prevalence and dependency ratio as out-of-survey predictors. Our key finding is that ANC prevalence was the superior auxiliary covariate, and provided substantially improved precision in many district-level estimates of HIV prevalence in the general population. Inclusion of a district-level spatial simultaneously autoregressive covariance structure did not result in improved estimation.

摘要

许多国家,包括南非,已经实施了基于人口的家庭调查来估计 HIV 的流行率和 HIV 感染的负担。大多数家庭 HIV 调查旨在提供可靠的估计,仅能达到第一个国家以下的地缘政治级别,在南非,由九个省份组成。然而,为了更好地针对 HIV 护理、治疗和预防服务的提供,需要至少到第二个国家以下的级别进行 HIV 流行率的估计。南非的第二个国家以下的级别由 52 个区组成。为了在第二个国家以下的级别实现足够的精度,要么需要大幅增加调查样本量,要么使用能够结合其他现有数据的基于模型的估计方法。我们的目的是利用 2012 年南非全国 HIV 流行率、发病率和行为调查的数据、2012 年接受产前保健 (ANC) 诊所检查的孕妇检测的区一级 HIV 流行率估计值以及 2012 年人口数据,展示在南非 52 个区中使用相对简单的小区域 HIV 流行率估计的效果。最佳拟合模型仅包括 ANC 流行率和依赖比作为调查外预测因子。我们的主要发现是,ANC 流行率是更好的辅助协变量,在许多人群的区一级 HIV 流行率估计中提供了大大提高的精度。纳入区一级空间同时自回归协方差结构并没有导致更好的估计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f097/6386240/a9e07302aa39/pone.0212445.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f097/6386240/6fd06c04478f/pone.0212445.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f097/6386240/e5b45edaec29/pone.0212445.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f097/6386240/8d87105f1c9f/pone.0212445.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f097/6386240/a9e07302aa39/pone.0212445.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f097/6386240/6fd06c04478f/pone.0212445.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f097/6386240/e5b45edaec29/pone.0212445.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f097/6386240/8d87105f1c9f/pone.0212445.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f097/6386240/a9e07302aa39/pone.0212445.g004.jpg

相似文献

[1]
Improving estimates of district HIV prevalence and burden in South Africa using small area estimation techniques.

PLoS One. 2019-2-22

[2]
Studying dynamics of the HIV epidemic: population-based data compared with sentinel surveillance in Zambia.

AIDS. 1998-7-9

[3]
Population and antenatal-based HIV prevalence estimates in a high contracepting female population in rural South Africa.

BMC Public Health. 2007-7-18

[4]
Statistical models for incorporating data from routine HIV testing of pregnant women at antenatal clinics into HIV/AIDS epidemic estimates.

AIDS. 2017-4

[5]
Reducing uncertainties in global HIV prevalence estimates: the case of Zambia.

BMC Public Health. 2006-4-2

[6]
Comparison of HIV prevalence estimates from antenatal care surveillance and population-based surveys in sub-Saharan Africa.

Sex Transm Infect. 2008-8

[7]
Challenges in estimating HIV prevalence trends and geographical variation in HIV prevalence using antenatal data: Insights from mathematical modelling.

PLoS One. 2020-11-20

[8]
District-level HIV estimates using the spectrum model in five states of India, 2017.

Medicine (Baltimore). 2021-7-16

[9]
Exploring the validity of routine individuated service data for antenatal HIV surveillance in the Western Cape.

BMC Infect Dis. 2025-3-4

[10]
Increasing HIV prevalence in a rural district of South Africa from 1992 through 1995.

J Acquir Immune Defic Syndr Hum Retrovirol. 1997-9-1

引用本文的文献

[1]
Bayesian estimation methods for survey data with potential applications to health disparities research.

Wiley Interdiscip Rev Comput Stat. 2024

[2]
A small area model to assess temporal trends and sub-national disparities in healthcare quality.

Nat Commun. 2023-7-28

[3]
Accelerating HIV epidemic control in Benue state, Nigeria, 2019-2021: the APIN program experience.

Ther Adv Infect Dis. 2023-2-18

[4]
Small Area Estimation for Disease Prevalence Mapping.

Int Stat Rev. 2020-8

[5]
Mapping HIV prevalence in Nigeria using small area estimates to develop a targeted HIV intervention strategy.

PLoS One. 2022

[6]
Estimating district HIV prevalence in Zambia using small-area estimation methods (SAE).

Popul Health Metr. 2022-2-19

[7]
When Pregnancy Coincides with Positive Diagnosis of HIV: Accounts of the Process of Acceptance of Self and Motherhood among Women in South Africa.

Int J Environ Res Public Health. 2021-12-9

[8]
Parenting the child with HIV in limited resource communities in South Africa: mothers with HIV's emotional vulnerability and hope for the future.

Womens Health (Lond). 2021

[9]
A Comparison of Bayesian Spatial Models for HIV Mapping in South Africa.

Int J Environ Res Public Health. 2021-10-26

[10]
Naomi: a new modelling tool for estimating HIV epidemic indicators at the district level in sub-Saharan Africa.

J Int AIDS Soc. 2021-9

本文引用的文献

[1]
HIV epidemic drivers in South Africa: A model-based evaluation of factors accounting for inter-provincial differences in HIV prevalence and incidence trends.

South Afr J HIV Med. 2017-7-28

[2]
Bayesian mapping of HIV infection among women of reproductive age in Rwanda.

PLoS One. 2015-3-26

[3]
HIV estimates at second subnational level from national population-based surveys.

AIDS. 2014-11

[4]
Bayesian spatial semi-parametric modeling of HIV variation in Kenya.

PLoS One. 2014-7-25

[5]
Maximising the effect of combination HIV prevention through prioritisation of the people and places in greatest need: a modelling study.

Lancet. 2014-7-19

[6]
Trends in HIV prevalence among young people in generalised epidemics: implications for monitoring the HIV epidemic.

Sex Transm Infect. 2012-12

[7]
Demographic and health surveys: a profile.

Int J Epidemiol. 2012-11-12

[8]
Health indicators: eliminating bias from convenience sampling estimators.

Stat Med. 2011-2-3

[9]
Millennium development goal 6 and HIV infection in Zambia: what can we learn from successive household surveys?

AIDS. 2011-1-2

[10]
Quantifying aggregated uncertainty in Plasmodium falciparum malaria prevalence and populations at risk via efficient space-time geostatistical joint simulation.

PLoS Comput Biol. 2010-4-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索