Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, Oxford, United Kingdom.
PLoS Comput Biol. 2010 Apr 1;6(4):e1000724. doi: 10.1371/journal.pcbi.1000724.
Risk maps estimating the spatial distribution of infectious diseases are required to guide public health policy from local to global scales. The advent of model-based geostatistics (MBG) has allowed these maps to be generated in a formal statistical framework, providing robust metrics of map uncertainty that enhances their utility for decision-makers. In many settings, decision-makers require spatially aggregated measures over large regions such as the mean prevalence within a country or administrative region, or national populations living under different levels of risk. Existing MBG mapping approaches provide suitable metrics of local uncertainty--the fidelity of predictions at each mapped pixel--but have not been adapted for measuring uncertainty over large areas, due largely to a series of fundamental computational constraints. Here the authors present a new efficient approximating algorithm that can generate for the first time the necessary joint simulation of prevalence values across the very large prediction spaces needed for global scale mapping. This new approach is implemented in conjunction with an established model for P. falciparum allowing robust estimates of mean prevalence at any specified level of spatial aggregation. The model is used to provide estimates of national populations at risk under three policy-relevant prevalence thresholds, along with accompanying model-based measures of uncertainty. By overcoming previously unchallenged computational barriers, this study illustrates how MBG approaches, already at the forefront of infectious disease mapping, can be extended to provide large-scale aggregate measures appropriate for decision-makers.
风险地图用于估计传染病的空间分布,以便从地方到全球尺度指导公共卫生政策。基于模型的地统计学(MBG)的出现使得这些地图可以在正式的统计框架中生成,为地图不确定性提供了稳健的度量标准,从而增强了其对决策者的实用性。在许多情况下,决策者需要在大区域(例如一个国家或行政区内的平均流行率,或处于不同风险水平下的全国人口)内进行空间聚合的措施。现有的 MBG 制图方法提供了适合的局部不确定性度量标准——每个映射像素的预测准确性——但由于一系列基本的计算限制,尚未针对大区域的不确定性进行调整。在这里,作者提出了一种新的高效近似算法,该算法首次能够在全球尺度制图所需的非常大的预测空间中生成流行率值的必要联合模拟。该新方法与现有的疟原虫模型相结合,允许在任何指定的空间聚合水平上对平均流行率进行稳健估计。该模型用于提供在三种与政策相关的流行率阈值下的风险国家人口估计,以及伴随的基于模型的不确定性度量标准。通过克服以前未受到挑战的计算障碍,本研究说明了 MBG 方法如何在传染病制图的前沿进一步扩展,以提供适合决策者的大规模聚合措施。