Department of Mathematics and Statistics, Hunter College, New York, NY, 10065, USA.
Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, 29208, USA.
Lifetime Data Anal. 2024 Apr;30(2):327-344. doi: 10.1007/s10985-023-09613-8. Epub 2023 Nov 28.
The proportional hazards mixture cure model is a popular analysis method for survival data where a subgroup of patients are cured. When the data are interval-censored, the estimation of this model is challenging due to its complex data structure. In this article, we propose a computationally efficient semiparametric Bayesian approach, facilitated by spline approximation and Poisson data augmentation, for model estimation and inference with interval-censored data and a cure rate. The spline approximation and Poisson data augmentation greatly simplify the MCMC algorithm and enhance the convergence of the MCMC chains. The empirical properties of the proposed method are examined through extensive simulation studies and also compared with the R package "GORCure". The use of the proposed method is illustrated through analyzing a data set from the Aerobics Center Longitudinal Study.
比例风险混合治愈模型是一种用于分析生存数据的常用方法,其中一部分患者被治愈。当数据存在区间删失时,由于其复杂的数据结构,对该模型的估计具有挑战性。在本文中,我们提出了一种计算效率高的半参数贝叶斯方法,通过样条逼近和泊松数据增强,用于对带有治愈率的区间删失数据进行模型估计和推断。样条逼近和泊松数据增强极大地简化了 MCMC 算法,并提高了 MCMC 链的收敛速度。通过广泛的模拟研究检验了所提出方法的经验性质,并与 R 包“GORCure”进行了比较。通过分析来自有氧运动中心纵向研究的数据,说明了所提出方法的使用。