文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用永磁体进行肺癌治疗中的磁性气溶胶药物靶向。

Magnetic aerosol drug targeting in lung cancer therapy using permanent magnet.

机构信息

a Department of Mechanical and Manufacturing Engineering , University of Calgary , Calgary , Alberta , Canada.

b Department of Chemical Engineering, College of Engineering , Shahid Bahonar University of Kerman , Kerman , Iran.

出版信息

Drug Deliv. 2019 Dec;26(1):120-128. doi: 10.1080/10717544.2018.1561765.


DOI:10.1080/10717544.2018.1561765
PMID:30798633
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6394297/
Abstract

Primary bronchial cancer accounts for almost 20% of all cancer death worldwide. One of the emerging techniques with tremendous power for lung cancer therapy is magnetic aerosol drug targeting (MADT). The use of a permanent magnet for effective drug delivery in a desired location throughout the lung requires extensive optimization, but it has not been addressed yet. In the present study, the possibility of using a permanent magnet for trapping the particles on a lung tumor is evaluated numerically in the Weibel's model from G0 to G3. The effect of different parameters is considered on the efficiency of particle deposition in a tumor located on a distant position of the lung bronchi and bronchioles. Also, the effective position of the magnetic source, tumor size, and location are the objectives for particle deposition. The results show that a limited particle deposition occurs on the lung branches in passive targeting. However, the incorporation of a permanent magnet next to the tumor enhanced the particle deposition fraction on G2 to up to 49% for the particles of 7 µm diameter. Optimizing the magnet size could also improve the particle deposition fraction by 68%. It was also shown that the utilization of MADT is essential for effective drug delivery to the tumors located on the lower wall of airway branches given the dominance of the air velocity and resultant drag force in this region. The results demonstrated the high competence and necessity of MADT as a noninvasive drug delivery method for lung cancer therapy.

摘要

原发性支气管癌占全球所有癌症死亡人数的近 20%。一种新兴的肺癌治疗技术——磁气溶胶药物靶向(MADT)具有巨大的潜力。为了在肺部的预期位置有效输送药物,需要使用永磁体进行广泛的优化,但目前尚未解决这一问题。在本研究中,我们在 Weibel 模型中从 G0 到 G3 对使用永磁体捕获肺部肿瘤上的粒子的可能性进行了数值评估。考虑了不同参数对位于肺部支气管和细支气管远端位置的肿瘤中粒子沉积效率的影响。此外,磁性源的有效位置、肿瘤大小和位置也是粒子沉积的目标。结果表明,在被动靶向中,肺部分支上的粒子沉积有限。然而,在肿瘤旁边放置永磁体可以将直径为 7 µm 的粒子在 G2 上的沉积分数提高到 49%。通过优化磁铁的尺寸,也可以将粒子沉积分数提高 68%。研究还表明,由于该区域的空气速度和阻力占主导地位,MADT 对于将药物有效输送到气道分支下部壁上的肿瘤是必不可少的。研究结果表明,MADT 作为一种非侵入性的肺癌治疗药物输送方法具有很高的能力和必要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b13/6394297/f690a82242fa/IDRD_A_1561765_F0005_B.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b13/6394297/a3dff8036c36/IDRD_A_1561765_F0001_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b13/6394297/67b7d0cda558/IDRD_A_1561765_F0002_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b13/6394297/250de43a63a2/IDRD_A_1561765_F0003_B.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b13/6394297/2d687fd46b51/IDRD_A_1561765_F0004_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b13/6394297/f690a82242fa/IDRD_A_1561765_F0005_B.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b13/6394297/a3dff8036c36/IDRD_A_1561765_F0001_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b13/6394297/67b7d0cda558/IDRD_A_1561765_F0002_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b13/6394297/250de43a63a2/IDRD_A_1561765_F0003_B.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b13/6394297/2d687fd46b51/IDRD_A_1561765_F0004_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b13/6394297/f690a82242fa/IDRD_A_1561765_F0005_B.jpg

相似文献

[1]
Magnetic aerosol drug targeting in lung cancer therapy using permanent magnet.

Drug Deliv. 2019-12

[2]
Numerical simulation of magnetic drug targeting to a tumor in the simplified model of the human lung.

Comput Methods Programs Biomed. 2019-2-2

[3]
High-Efficiency Nose-to-Lung Aerosol Delivery in an Infant: Development of a Validated Computational Fluid Dynamics Method.

J Aerosol Med Pulm Drug Deliv. 2018-12-15

[4]
Magnetic deposition of aerosols composed of aggregated superparamagnetic nanoparticles.

Pharm Res. 2010-3-3

[5]
Targeted drug aerosol deposition analysis for a four-generation lung airway model with hemispherical tumors.

J Biomech Eng. 2003-4

[6]
Magnetic Forces by Permanent Magnets to Manipulate Magnetoresponsive Particles in Drug-Targeting Applications.

Micromachines (Basel). 2022-10-25

[7]
Magnetic drug targeting through a realistic model of human tracheobronchial airways using computational fluid and particle dynamics.

Biomech Model Mechanobiol. 2016-10

[8]
Magnetic particle targeting for diagnosis and therapy of lung cancers.

J Control Release. 2020-12-10

[9]
Inhaled aerosol dose distribution between proximal bronchi and lung periphery.

Eur J Pharm Biopharm. 2020-7

[10]
Non-spherical drug particle deposition in human airway using computational fluid dynamics and discrete element method.

Int J Pharm. 2023-5-25

引用本文的文献

[1]
Numerical simulation of magnetic drug targeting for lung cancer therapy using a bulk superconducting magnet.

Drug Deliv. 2025-12

[2]
Leveraging Numerical Simulation Technology to Advance Drug Preparation: A Comprehensive Review of Application Scenarios and Cases.

Pharmaceutics. 2024-10-7

[3]
Nano-Drug Carriers for Targeted Therapeutic Approaches in Oral Cancer: A Systematic Review.

J Maxillofac Oral Surg. 2024-8

[4]
Coupling magnetic torque and force for colloidal microbot assembly and manipulation.

Adv Intell Syst. 2023-12

[5]
Recent Developments in Aerosol Pulmonary Drug Delivery: New Technologies, New Cargos, and New Targets.

Annu Rev Biomed Eng. 2024-7

[6]
Exosomes from magnetic particles-primed mesenchymal stem cells enhance neural differentiation of PC12 cells.

Heliyon. 2023-10-16

[7]
Mineral medicine: from traditional drugs to multifunctional delivery systems.

Chin Med. 2022-2-10

[8]
Focused targeting of inhaled magnetic aerosols in reconstructed in vitro airway models.

J Biomech. 2021-3-30

[9]
An experimental study of respiratory aerosol transport in phantom lung bronchioles.

Phys Fluids (1994). 2020-11-1

[10]
Magnetic particle targeting for diagnosis and therapy of lung cancers.

J Control Release. 2020-12-10

本文引用的文献

[1]
Delivery of magnetic micro/nanoparticles and magnetic-based drug/cargo into arterial flow for targeted therapy.

Drug Deliv. 2018-11

[2]
Mathematical Modeling of the Function of Warburg Effect in Tumor Microenvironment.

Sci Rep. 2018-6-11

[3]
Magnetically assisted intraperitoneal drug delivery for cancer chemotherapy.

Drug Deliv. 2018-11

[4]
Translational models of tumor angiogenesis: A nexus of in silico and in vitro models.

Biotechnol Adv. 2018-3-5

[5]
In vitro models and systems for evaluating the dynamics of drug delivery to the healthy and diseased brain.

J Control Release. 2018-2-6

[6]
Closed-loop control of targeted ultrasound drug delivery across the blood-brain/tumor barriers in a rat glioma model.

Proc Natl Acad Sci U S A. 2017-11-13

[7]
In Vivo Pulmonary Delivery and Magnetic-Targeting of Dry Powder Nano-in-Microparticles.

Mol Pharm. 2017-11-9

[8]
Influence of Airway Secretion on Airflow Dynamics of Mechanical Ventilated Respiratory System.

IEEE/ACM Trans Comput Biol Bioinform. 2017-8-9

[9]
Cisplatin-resistant lung cancer cell-derived exosomes increase cisplatin resistance of recipient cells in exosomal miR-100-5p-dependent manner.

Int J Nanomedicine. 2017-5-15

[10]
Penetration of inhaled aerosols in the bronchial tree.

Med Eng Phys. 2017-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索