a Department of Mechanical and Manufacturing Engineering , University of Calgary , Calgary , Alberta , Canada.
b Department of Chemical Engineering, College of Engineering , Shahid Bahonar University of Kerman , Kerman , Iran.
Drug Deliv. 2019 Dec;26(1):120-128. doi: 10.1080/10717544.2018.1561765.
Primary bronchial cancer accounts for almost 20% of all cancer death worldwide. One of the emerging techniques with tremendous power for lung cancer therapy is magnetic aerosol drug targeting (MADT). The use of a permanent magnet for effective drug delivery in a desired location throughout the lung requires extensive optimization, but it has not been addressed yet. In the present study, the possibility of using a permanent magnet for trapping the particles on a lung tumor is evaluated numerically in the Weibel's model from G0 to G3. The effect of different parameters is considered on the efficiency of particle deposition in a tumor located on a distant position of the lung bronchi and bronchioles. Also, the effective position of the magnetic source, tumor size, and location are the objectives for particle deposition. The results show that a limited particle deposition occurs on the lung branches in passive targeting. However, the incorporation of a permanent magnet next to the tumor enhanced the particle deposition fraction on G2 to up to 49% for the particles of 7 µm diameter. Optimizing the magnet size could also improve the particle deposition fraction by 68%. It was also shown that the utilization of MADT is essential for effective drug delivery to the tumors located on the lower wall of airway branches given the dominance of the air velocity and resultant drag force in this region. The results demonstrated the high competence and necessity of MADT as a noninvasive drug delivery method for lung cancer therapy.
原发性支气管癌占全球所有癌症死亡人数的近 20%。一种新兴的肺癌治疗技术——磁气溶胶药物靶向(MADT)具有巨大的潜力。为了在肺部的预期位置有效输送药物,需要使用永磁体进行广泛的优化,但目前尚未解决这一问题。在本研究中,我们在 Weibel 模型中从 G0 到 G3 对使用永磁体捕获肺部肿瘤上的粒子的可能性进行了数值评估。考虑了不同参数对位于肺部支气管和细支气管远端位置的肿瘤中粒子沉积效率的影响。此外,磁性源的有效位置、肿瘤大小和位置也是粒子沉积的目标。结果表明,在被动靶向中,肺部分支上的粒子沉积有限。然而,在肿瘤旁边放置永磁体可以将直径为 7 µm 的粒子在 G2 上的沉积分数提高到 49%。通过优化磁铁的尺寸,也可以将粒子沉积分数提高 68%。研究还表明,由于该区域的空气速度和阻力占主导地位,MADT 对于将药物有效输送到气道分支下部壁上的肿瘤是必不可少的。研究结果表明,MADT 作为一种非侵入性的肺癌治疗药物输送方法具有很高的能力和必要性。
Comput Methods Programs Biomed. 2019-2-2
J Aerosol Med Pulm Drug Deliv. 2018-12-15
Micromachines (Basel). 2022-10-25
Biomech Model Mechanobiol. 2016-10
J Control Release. 2020-12-10
Eur J Pharm Biopharm. 2020-7
J Maxillofac Oral Surg. 2024-8
Adv Intell Syst. 2023-12
Annu Rev Biomed Eng. 2024-7
Phys Fluids (1994). 2020-11-1
J Control Release. 2020-12-10
Drug Deliv. 2018-11
Biotechnol Adv. 2018-3-5
J Control Release. 2018-2-6
Proc Natl Acad Sci U S A. 2017-11-13
IEEE/ACM Trans Comput Biol Bioinform. 2017-8-9
Med Eng Phys. 2017-6