Suppr超能文献

一种用于神经元和突触可塑性模型的高效 FPGA 映射的新型非线性函数评估方法。

A Novel Nonlinear Function Evaluation Approach for Efficient FPGA Mapping of Neuron and Synaptic Plasticity Models.

出版信息

IEEE Trans Biomed Circuits Syst. 2019 Apr;13(2):454-469. doi: 10.1109/TBCAS.2019.2900943. Epub 2019 Feb 22.

Abstract

Efficient hardware realization of spiking neural networks is of great significance in a wide variety of applications, such as high-speed modeling and simulation of large-scale neural systems. Exploiting the key features of FPGAs, this paper presents a novel nonlinear function evaluation approach, based on an effective uniform piecewise linear segmentation method, to efficiently approximate the nonlinear terms of neuron and synaptic plasticity models targeting low-cost digital implementation. The proposed approach takes advantage of a high-speed and extremely simple segment address encoder unit regardless of the number of segments, and therefore is capable of accurately approximating a given nonlinear function with a large number of straight lines. In addition, this approach can be efficiently mapped into FPGAs with minimal hardware cost. To investigate the application of the proposed nonlinear function evaluation approach in low-cost neuromorphic circuit design, it is applied to four case studies: the Izhikevich and FitzHugh-Nagumo neuron models as 2-dimensional case studies, the Hindmarsh-Rose neuron model as a relatively complex 3-dimensional model containing two nonlinear terms, and a calcium-based synaptic plasticity model capable of producing various STDP curves. Simulation and FPGA synthesis results demonstrate that the hardware proposed for each case study is capable of producing various responses remarkably similar to the original model and significantly outperforms the previously published counterparts in terms of resource utilization and maximum clock frequency.

摘要

Spike 神经网络的高效硬件实现对于各种应用具有重要意义,例如大规模神经网络的高速建模和仿真。本文利用 FPGA 的关键特性,提出了一种新的非线性函数评估方法,该方法基于有效的均匀分段线性分段方法,针对低成本数字实现,有效地逼近神经元和突触可塑性模型的非线性项。所提出的方法利用了高速且极其简单的分段地址编码器单元,而与分段数量无关,因此能够用大量直线精确逼近给定的非线性函数。此外,该方法可以以最小的硬件成本有效地映射到 FPGA 中。为了研究所提出的非线性函数评估方法在低成本神经形态电路设计中的应用,将其应用于四个案例研究:Izhikevich 和 FitzHugh-Nagumo 神经元模型作为二维案例研究,Hindmarsh-Rose 神经元模型作为包含两个非线性项的相对复杂的三维模型,以及能够产生各种 STDP 曲线的基于钙的突触可塑性模型。仿真和 FPGA 综合结果表明,针对每个案例研究提出的硬件能够产生与原始模型非常相似的各种响应,并且在资源利用率和最高时钟频率方面明显优于以前的出版物。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验