Suppr超能文献

叶绿体逆行信号转导的进化促进了绿色植物对陆地的适应。

Evolution of chloroplast retrograde signaling facilitates green plant adaptation to land.

机构信息

College of Agriculture and Biotechnology, Zhejiang University, 310058 Hangzhou, China.

School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia.

出版信息

Proc Natl Acad Sci U S A. 2019 Mar 12;116(11):5015-5020. doi: 10.1073/pnas.1812092116. Epub 2019 Feb 25.

Abstract

Chloroplast retrograde signaling networks are vital for chloroplast biogenesis, operation, and signaling, including excess light and drought stress signaling. To date, retrograde signaling has been considered in the context of land plant adaptation, but not regarding the origin and evolution of signaling cascades linking chloroplast function to stomatal regulation. We show that key elements of the chloroplast retrograde signaling process, the nucleotide phosphatase (SAL1) and 3'-phosphoadenosine-5'-phosphate (PAP) metabolism, evolved in streptophyte algae-the algal ancestors of land plants. We discover an early evolution of SAL1-PAP chloroplast retrograde signaling in stomatal regulation based on conserved gene and protein structure, function, and enzyme activity and transit peptides of SAL1s in species including flowering plants, the fern , and the moss Moreover, we demonstrate that PAP regulates stomatal closure via secondary messengers and ion transport in guard cells of these diverse lineages. The origin of stomata facilitated gas exchange in the earliest land plants. Our findings suggest that the conquest of land by plants was enabled by rapid response to drought stress through the deployment of an ancestral SAL1-PAP signaling pathway, intersecting with the core abscisic acid signaling in stomatal guard cells.

摘要

叶绿体逆行信号网络对于叶绿体的生物发生、运作和信号传递至关重要,包括过量光照和干旱胁迫信号。迄今为止,逆行信号已被认为是陆地植物适应的背景下,但并没有涉及将叶绿体功能与气孔调节联系起来的信号级联的起源和进化。我们表明,叶绿体逆行信号过程的关键要素,核苷酸磷酸酶(SAL1)和 3'-磷酸腺苷-5'-磷酸(PAP)代谢,在绿藻——陆地植物的藻类祖先中进化而来。我们发现基于保守的基因和蛋白质结构、功能以及 SAL1s 的酶活性和转运肽,SAL1-PAP 叶绿体逆行信号在气孔调节中的早期进化,包括开花植物、蕨类植物和苔藓植物。此外,我们证明 PAP 通过在这些不同谱系的保卫细胞中的二级信使和离子转运来调节气孔关闭。气孔的起源促进了最早的陆地植物中的气体交换。我们的研究结果表明,植物对干旱胁迫的快速反应通过部署一个古老的 SAL1-PAP 信号通路,与气孔保卫细胞中的核心脱落酸信号交叉,使植物能够迅速征服陆地。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/29f7/6421419/4ad77748c430/pnas.1812092116fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验