Suppr超能文献

负载依赖的脱离动力学在驱动蛋白和动力蛋白的双向货物运输中起着关键作用。

Load-dependent detachment kinetics plays a key role in bidirectional cargo transport by kinesin and dynein.

机构信息

Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania.

School of Mathematical and Statistical Sciences, Arizona State University, Tempe, Arizona.

出版信息

Traffic. 2019 Apr;20(4):284-294. doi: 10.1111/tra.12639.

Abstract

Bidirectional cargo transport along microtubules is carried out by opposing teams of kinesin and dynein motors. Despite considerable study, the factors that determine whether these competing teams achieve net anterograde or retrograde transport in cells remain unclear. The goal of this work is to use stochastic simulations of bidirectional transport to determine the motor properties that most strongly determine overall cargo velocity and directionality. Simulations were carried out based on published optical tweezer characterization of kinesin-1 and kinesin-2, and for available data for cytoplasmic dynein and the dynein-dynactin-BicD2 (DDB) complex. By varying dynein parameters and analyzing cargo trajectories, we find that net cargo transport is predicted to depend minimally on the dynein stall force, but strongly on dynein load-dependent detachment kinetics. In simulations, dynein is dominated by kinesin-1, but DDB and kinesin-1 are evenly matched, recapitulating recent experimental work. Kinesin-2 competes less well against dynein and DDB, and overall, load-dependent motor detachment is the property that most determines a motor's ability to compete in bidirectional transport. It follows that the most effective intracellular regulators of bidirectional transport are predicted to be those that alter motor detachment kinetics rather than motor velocity or stall force.

摘要

沿微管的双向货物运输是由相反的驱动蛋白和动力蛋白团队完成的。尽管进行了大量的研究,但决定这些竞争团队在细胞中是否能实现净正向或逆向运输的因素仍不清楚。这项工作的目标是使用双向运输的随机模拟来确定最能强烈决定货物整体速度和方向性的马达特性。模拟是基于已发表的对驱动蛋白-1 和驱动蛋白-2 的光镊特性的描述,以及细胞质动力蛋白和动力蛋白-动力蛋白激活蛋白-BicD2(DDB)复合物的可用数据进行的。通过改变动力蛋白参数并分析货物轨迹,我们发现净货物运输预计最少取决于动力蛋白的失速力,但强烈取决于动力蛋白负载相关的脱离动力学。在模拟中,动力蛋白主要由驱动蛋白-1 驱动,但 DDB 和驱动蛋白-1 势均力敌,这与最近的实验工作相符。驱动蛋白-2 与动力蛋白和 DDB 的竞争能力较差,总的来说,负载相关的马达脱离是决定马达在双向运输中竞争能力的最重要特性。因此,预测最有效的细胞内双向运输调节剂是那些改变马达脱离动力学而不是马达速度或失速力的调节剂。

相似文献

引用本文的文献

4
On the use of thermal forces to probe kinesin's response to force.关于利用热力来探究驱动蛋白对力的响应。
Front Mol Biosci. 2023 Oct 31;10:1260914. doi: 10.3389/fmolb.2023.1260914. eCollection 2023.
10
Selective motor activation in organelle transport along axons.沿轴突的细胞器运输中的选择性运动激活。
Nat Rev Mol Cell Biol. 2022 Nov;23(11):699-714. doi: 10.1038/s41580-022-00491-w. Epub 2022 May 30.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验