Suppr超能文献

成对的肌球蛋白-1 和肌球蛋白-3 马达介导的货物运输的动力学机制。

Motor Dynamics Underlying Cargo Transport by Pairs of Kinesin-1 and Kinesin-3 Motors.

机构信息

Department of Physics, Worcester Polytechnic Institute, Worcester, Massachusetts.

Department of Biophysics, University of Michigan, Ann Arbor, Michigan; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.

出版信息

Biophys J. 2019 Mar 19;116(6):1115-1126. doi: 10.1016/j.bpj.2019.01.036. Epub 2019 Feb 5.

Abstract

Intracellular cargo transport by kinesin family motor proteins is crucial for many cellular processes, particularly vesicle transport in axons and dendrites. In a number of cases, the transport of specific cargo is carried out by two classes of kinesins that move at different speeds and thus compete during transport. Despite advances in single-molecule characterization and modeling approaches, many questions remain regarding the effect of intermotor tension on motor attachment/reattachment rates during cooperative multimotor transport. To understand the motor dynamics underlying multimotor transport, we analyzed the complexes of kinesin-1 and kinesin-3 motors attached through protein scaffolds moving on immobilized microtubules in vitro. To interpret the observed behavior, simulations were carried out using a model that incorporated motor stepping, attachment/detachment rates, and intermotor force generation. In single-molecule experiments, isolated kinesin-3 motors moved twofold faster and had threefold higher landing rates than kinesin-1. When the positively charged loop 12 of kinesin-3 was swapped with that of kinesin-1, the landing rates reversed, indicating that this "K-loop" is a key determinant of the motor reattachment rate. In contrast, swapping loop 12 had negligible effects on motor velocities. Two-motor complexes containing one kinesin-1 and one kinesin-3 moved at different speeds depending on the identity of their loop 12, indicating the importance of the motor reattachment rate on the cotransport speed. Simulations of these loop-swapped motors using experimentally derived motor parameters were able to reproduce the experimental results and identify best fit parameters for the motor reattachment rates for this geometry. Simulation results also supported previous work, suggesting that kinesin-3 microtubule detachment is very sensitive to load. Overall, the simulations demonstrate that the transport behavior of cargo carried by pairs of kinesin-1 and -3 motors are determined by three properties that differ between these two families: the unloaded velocity, the load dependence of detachment, and the motor reattachment rate.

摘要

细胞内货物运输是由驱动蛋白家族的马达蛋白来完成的,这对许多细胞过程至关重要,特别是在轴突和树突中的囊泡运输。在许多情况下,特定货物的运输是由两类移动速度不同的驱动蛋白来完成的,因此在运输过程中存在竞争。尽管在单分子特征描述和建模方法方面取得了进展,但对于在协同多驱动蛋白运输过程中,马达间张力对马达附着/再附着速率的影响,仍有许多问题尚未解决。为了了解多驱动蛋白运输的马达动力学,我们分析了在固定化微管上通过蛋白支架移动的连接在一起的驱动蛋白-1 和驱动蛋白-3 马达复合物。为了解释观察到的行为,我们使用一种模型进行了模拟,该模型包含了马达的步进、附着/脱离速率以及马达间力的产生。在单分子实验中,孤立的驱动蛋白-3 比驱动蛋白-1 移动快两倍,附着率高三倍。当驱动蛋白-3 的正电荷环 12 与驱动蛋白-1 的环 12 交换时,附着率发生了反转,表明这个“K 环”是决定马达再附着速率的关键因素。相比之下,交换环 12 对马达速度几乎没有影响。包含一个驱动蛋白-1 和一个驱动蛋白-3 的双马达复合物以不同的速度移动,这取决于它们的环 12 的身份,这表明马达再附着速率对共运输速度的重要性。使用实验得出的马达参数对这些环交换马达进行模拟,能够重现实验结果,并确定这种几何形状下马达再附着速率的最佳拟合参数。模拟结果还支持了以前的工作,表明驱动蛋白-3 微管的脱离对负载非常敏感。总的来说,模拟结果表明,由驱动蛋白-1 和驱动蛋白-3 组成的货物运输行为由这两种家族之间的三个特性决定:空载速度、脱离的负载依赖性以及马达再附着速率。

相似文献

1
Motor Dynamics Underlying Cargo Transport by Pairs of Kinesin-1 and Kinesin-3 Motors.
Biophys J. 2019 Mar 19;116(6):1115-1126. doi: 10.1016/j.bpj.2019.01.036. Epub 2019 Feb 5.
3
Motor Reattachment Kinetics Play a Dominant Role in Multimotor-Driven Cargo Transport.
Biophys J. 2018 Jan 23;114(2):400-409. doi: 10.1016/j.bpj.2017.11.016.
4
Simulations suggest robust microtubule attachment of kinesin and dynein in antagonistic pairs.
Biophys J. 2023 Aug 22;122(16):3299-3313. doi: 10.1016/j.bpj.2023.07.007. Epub 2023 Jul 17.
5
Multiple kinesins induce tension for smooth cargo transport.
Elife. 2019 Oct 31;8:e50974. doi: 10.7554/eLife.50974.
7
Organization of two kinesins in a two-dimensional microtubule network.
PLoS One. 2024 Mar 13;19(3):e0295652. doi: 10.1371/journal.pone.0295652. eCollection 2024.
8
The family-specific K-loop influences the microtubule on-rate but not the superprocessivity of kinesin-3 motors.
Mol Biol Cell. 2014 Jul 15;25(14):2161-70. doi: 10.1091/mbc.E14-01-0696. Epub 2014 May 21.
9
Intracellular cargo transport by single-headed kinesin motors.
Proc Natl Acad Sci U S A. 2019 Mar 26;116(13):6152-6161. doi: 10.1073/pnas.1817924116. Epub 2019 Mar 8.
10
Delineating cooperative responses of processive motors in living cells.
Proc Natl Acad Sci U S A. 2014 Jan 21;111(3):E334-43. doi: 10.1073/pnas.1313569111. Epub 2014 Jan 8.

引用本文的文献

3
Optogenetic control of kinesin-1, -2, -3 and dynein reveals their specific roles in vesicular transport.
Cell Rep. 2024 Aug 27;43(8):114649. doi: 10.1016/j.celrep.2024.114649. Epub 2024 Aug 18.
4
On the use of thermal forces to probe kinesin's response to force.
Front Mol Biosci. 2023 Oct 31;10:1260914. doi: 10.3389/fmolb.2023.1260914. eCollection 2023.
5
Simulations suggest robust microtubule attachment of kinesin and dynein in antagonistic pairs.
Biophys J. 2023 Aug 22;122(16):3299-3313. doi: 10.1016/j.bpj.2023.07.007. Epub 2023 Jul 17.
6
KIF1A is kinetically tuned to be a superengaging motor under hindering loads.
Proc Natl Acad Sci U S A. 2023 Jan 10;120(2):e2216903120. doi: 10.1073/pnas.2216903120. Epub 2023 Jan 4.
8
KIF13A-A Key Regulator of Recycling Endosome Dynamics.
Front Cell Dev Biol. 2022 Apr 25;10:877532. doi: 10.3389/fcell.2022.877532. eCollection 2022.
9
In Vivo Live Imaging of Axonal Transport in Developing Zebrafish Axons.
Methods Mol Biol. 2022;2431:325-350. doi: 10.1007/978-1-0716-1990-2_17.
10
Tissue architecture: Two kinesins collaborate in building basement membrane.
Curr Biol. 2022 Feb 28;32(4):R162-R165. doi: 10.1016/j.cub.2022.01.006.

本文引用的文献

1
Motor Reattachment Kinetics Play a Dominant Role in Multimotor-Driven Cargo Transport.
Biophys J. 2018 Jan 23;114(2):400-409. doi: 10.1016/j.bpj.2017.11.016.
2
Intraflagellar transport velocity is governed by the number of active KIF17 and KIF3AB motors and their motility properties under load.
Proc Natl Acad Sci U S A. 2017 Aug 15;114(33):E6830-E6838. doi: 10.1073/pnas.1708157114. Epub 2017 Jul 31.
3
Heterogeneity in kinesin function.
Traffic. 2017 Oct;18(10):658-671. doi: 10.1111/tra.12504. Epub 2017 Sep 8.
4
Examining kinesin processivity within a general gating framework.
Elife. 2015 Apr 22;4:e07403. doi: 10.7554/eLife.07403.
5
The Mechanochemical Cycle of Mammalian Kinesin-2 KIF3A/B under Load.
Curr Biol. 2015 May 4;25(9):1166-75. doi: 10.1016/j.cub.2015.03.013. Epub 2015 Apr 9.
6
Influence of fluorescent tag on the motility properties of kinesin-1 in single-molecule assays.
Biophys J. 2015 Mar 10;108(5):1133-43. doi: 10.1016/j.bpj.2015.01.031.
7
Processivity of the kinesin-2 KIF3A results from rear head gating and not front head gating.
J Biol Chem. 2015 Apr 17;290(16):10274-94. doi: 10.1074/jbc.M114.628032. Epub 2015 Feb 5.
9
A method for multiprotein assembly in cells reveals independent action of kinesins in complex.
J Cell Biol. 2014 Nov 10;207(3):393-406. doi: 10.1083/jcb.201407086. Epub 2014 Nov 3.
10
Bidirectional cargo transport: moving beyond tug of war.
Nat Rev Mol Cell Biol. 2014 Sep;15(9):615-28. doi: 10.1038/nrm3853. Epub 2014 Aug 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验