Maastricht MultiModal Molecular Imaging institute (M4I), Maastricht, 6229 ER, The Netherlands.
Icometrix, R&D, Leuven, 3000, Belgium.
Sci Rep. 2019 Feb 27;9(1):2915. doi: 10.1038/s41598-019-38914-y.
Mass spectrometry imaging (MSI) and histology are complementary analytical tools. Integration of the two imaging modalities can enhance the spatial resolution of the MSI beyond its experimental limits. Patch-based super resolution (PBSR) is a method where high spatial resolution features from one image modality guide the reconstruction of a low resolution image from a second modality. The principle of PBSR lies in image redundancy and aims at finding similar pixels in the neighborhood of a central pixel that are then used to guide reconstruction of the central pixel. In this work, we employed PBSR to increase the resolution of MSI. We validated the proposed pipeline by using a phantom image (micro-dissected logo within a tissue) and mouse cerebellum samples. We compared the performance of the PBSR with other well-known methods: linear interpolation (LI) and image fusion (IF). Quantitative and qualitative assessment showed advantage over the former and comparability with the latter. Furthermore, we demonstrated the potential applicability of PBSR in a clinical setting by accurately integrating structural (i.e., histological) and molecular (i.e., MSI) information from a case study of a dog liver.
质谱成像(MSI)和组织学是互补的分析工具。两种成像方式的结合可以提高 MSI 的空间分辨率,超出其实验限制。基于补丁的超分辨率(PBSR)是一种方法,其中来自一种图像模式的高空间分辨率特征指导从第二种模式重建低分辨率图像。PBSR 的原理在于图像冗余,并旨在找到中央像素附近的相似像素,然后使用这些像素来指导中央像素的重建。在这项工作中,我们使用 PBSR 来提高 MSI 的分辨率。我们使用幻影图像(组织内微切割的徽标)和小鼠小脑样本验证了所提出的管道。我们将 PBSR 的性能与其他知名方法(线性插值(LI)和图像融合(IF))进行了比较。定量和定性评估显示优于前者,与后者具有可比性。此外,我们通过准确地整合来自狗肝案例研究的结构(即组织学)和分子(即 MSI)信息,展示了 PBSR 在临床环境中的潜在适用性。