Gábor Attila, Banga Julio R
BioProcess Engineering Group, IIM-CSIC, Eduardo Cabello 6, Vigo, 36208, Spain.
BMC Syst Biol. 2015 Oct 29;9:74. doi: 10.1186/s12918-015-0219-2.
Dynamic modelling provides a systematic framework to understand function in biological systems. Parameter estimation in nonlinear dynamic models remains a very challenging inverse problem due to its nonconvexity and ill-conditioning. Associated issues like overfitting and local solutions are usually not properly addressed in the systems biology literature despite their importance. Here we present a method for robust and efficient parameter estimation which uses two main strategies to surmount the aforementioned difficulties: (i) efficient global optimization to deal with nonconvexity, and (ii) proper regularization methods to handle ill-conditioning. In the case of regularization, we present a detailed critical comparison of methods and guidelines for properly tuning them. Further, we show how regularized estimations ensure the best trade-offs between bias and variance, reducing overfitting, and allowing the incorporation of prior knowledge in a systematic way.
We illustrate the performance of the presented method with seven case studies of different nature and increasing complexity, considering several scenarios of data availability, measurement noise and prior knowledge. We show how our method ensures improved estimations with faster and more stable convergence. We also show how the calibrated models are more generalizable. Finally, we give a set of simple guidelines to apply this strategy to a wide variety of calibration problems.
Here we provide a parameter estimation strategy which combines efficient global optimization with a regularization scheme. This method is able to calibrate dynamic models in an efficient and robust way, effectively fighting overfitting and allowing the incorporation of prior information.
动态建模提供了一个系统框架来理解生物系统中的功能。非线性动态模型中的参数估计由于其非凸性和病态性仍然是一个极具挑战性的反问题。尽管过度拟合和局部解等相关问题很重要,但在系统生物学文献中通常没有得到妥善解决。在此,我们提出一种用于稳健且高效参数估计的方法,该方法使用两种主要策略来克服上述困难:(i)采用高效全局优化来处理非凸性,以及(ii)采用适当的正则化方法来处理病态性。在正则化方面,我们对方法进行了详细的关键比较,并给出了适当调整它们的指导方针。此外,我们展示了正则化估计如何确保在偏差和方差之间实现最佳权衡,减少过度拟合,并允许以系统的方式纳入先验知识。
我们通过七个不同性质且复杂度不断增加的案例研究来说明所提出方法的性能,考虑了几种数据可用性、测量噪声和先验知识的情况。我们展示了我们的方法如何通过更快且更稳定的收敛确保改进的估计。我们还展示了校准后的模型如何具有更强的泛化能力。最后,我们给出了一组简单的指导方针,以将此策略应用于各种校准问题。
在此我们提供了一种将高效全局优化与正则化方案相结合的参数估计策略。该方法能够以高效且稳健的方式校准动态模型,有效对抗过度拟合并允许纳入先验信息。