Suppr超能文献

系统生物学中动态模型的最优性和辨识:逆最优控制框架。

Optimality and identification of dynamic models in systems biology: an inverse optimal control framework.

机构信息

Bioprocess Engineering Group, Spanish National Research Council, IIM-CSIC Vigo, Spain.

Department of Chemical Engineering, University of Vigo Vigo, Spain.

出版信息

Bioinformatics. 2018 Jul 15;34(14):2433-2440. doi: 10.1093/bioinformatics/bty139.

Abstract

MOTIVATION

Optimality principles have been used to explain many biological processes and systems. However, the functions being optimized are in general unknown a priori. Here we present an inverse optimal control framework for modeling dynamics in systems biology. The objective is to identify the underlying optimality principle from observed time-series data and simultaneously estimate unmeasured time-dependent inputs and time-invariant model parameters. As a special case, we also consider the problem of optimal simultaneous estimation of inputs and parameters from noisy data. After presenting a general statement of the inverse optimal control problem, and discussing special cases of interest, we outline numerical strategies which are scalable and robust.

RESULTS

We discuss the existence, relevance and implications of identifiability issues in the above problems. We present a robust computational approach based on regularized cost functions and the use of suitable direct numerical methods based on the control-vector parameterization approach. To avoid convergence to local solutions, we make use of hybrid global-local methods. We illustrate the performance and capabilities of this approach with several challenging case studies, including simulated and real data. We pay particular attention to the computational scalability of our approach (with the objective of considering large numbers of inputs and states). We provide a software implementation of both the methods and the case studies.

AVAILABILITY AND IMPLEMENTATION

The code used to obtain the results reported here is available at https://zenodo.org/record/1009541.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

最优性原则已被用于解释许多生物过程和系统。然而,被优化的功能通常是未知的。在这里,我们提出了一种用于系统生物学建模动态的逆最优控制框架。目标是从观测的时间序列数据中识别潜在的最优性原则,并同时估计未测量的时变输入和时不变模型参数。作为一个特例,我们还考虑了从噪声数据中同时最佳估计输入和参数的问题。在提出逆最优控制问题的一般表述并讨论感兴趣的特例后,我们概述了可扩展和稳健的数值策略。

结果

我们讨论了上述问题中可识别性问题的存在、相关性和影响。我们提出了一种基于正则化代价函数的稳健计算方法,并使用基于控制向量参数化方法的合适直接数值方法。为了避免收敛到局部解,我们使用混合全局-局部方法。我们通过几个具有挑战性的案例研究,包括模拟和真实数据,说明了这种方法的性能和能力。我们特别注意我们方法的计算可扩展性(考虑大量输入和状态的目标)。我们提供了方法和案例研究的软件实现。

可用性和实现

此处报告的结果所使用的代码可在 https://zenodo.org/record/1009541 上获得。

补充信息

补充数据可在生物信息学在线获得。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验