Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.
EMBL Grenoble, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France.
Acta Crystallogr D Struct Biol. 2019 Feb 1;75(Pt 2):192-199. doi: 10.1107/S2059798319002031. Epub 2019 Feb 11.
Harnessing the anomalous signal from macromolecular crystals with volumes of less than 10 000 µm for native phasing requires careful experimental planning. The type of anomalous scatterers that are naturally present in the sample, such as sulfur, phosphorus and calcium, will dictate the beam energy required and determine the level of radiation sensitivity, while the crystal size will dictate the beam size and the sample-mounting technique, in turn indicating the specifications of a suitable beamline. On the EMBL beamline P13 at PETRA III, Mesh&Collect data collection from concanavalin A microcrystals with linear dimensions of ∼20 µm or less using an accordingly sized microbeam at a wavelength of 1.892 Å (6.551 keV, close to the Mn edge at 6.549 keV) increases the expected Bijvoet ratio to 2.1% from an expected 0.7% at 12.6 keV (Se K edge), thus allowing experimental phase determination using the anomalous signal from naturally present Mn and Ca ions. Dozens of crystals were harvested and flash-cryocooled in micro-meshes, rapidly screened for diffraction (less than a minute per loop) and then used for serial Mesh&Collect collection of about 298 partial data sets (10° of crystal rotation per sample). The partial data sets were integrated and scaled. A genetic algorithm for combining partial data sets was used to select those to be merged into a single data set. This final data set showed high completeness, high multiplicity and sufficient anomalous signal to locate the anomalous scatterers, and provided phasing information which allowed complete auto-tracing of the polypeptide chain. To allow the complete experiment to run in less than 2 h, a practically acceptable time frame, the diffractometer and detector had to run together with limited manual intervention. The combination of several cutting-edge components allowed accurate anomalous signal to be measured from small crystals.
利用体积小于 10000μm 的大分子晶体的异常信号进行天然相分析需要仔细的实验规划。样品中天然存在的异常散射体的类型,如硫、磷和钙,将决定所需的光束能量,并确定辐射灵敏度的水平,而晶体尺寸将决定光束尺寸和样品安装技术,从而指示合适光束线的规格。在 PETRA III 的 EMBL 光束线 P13 上,使用相应尺寸的微光束(波长为 1.892Å(6.551keV,接近 6.549keV 处的 Mn 边缘))从尺寸约为 20μm 或更小的伴刀豆球蛋白 A 微晶体中收集 Mesh&Collect 数据,将预期的 Bijvoet 比从 12.6keV(SeK 边缘)处的 0.7%增加到 2.1%,从而允许使用天然存在的 Mn 和 Ca 离子的异常信号进行实验相确定。收获了数十个晶体并在微网格中进行快速闪光冷冻,快速进行衍射筛选(每个循环不到一分钟),然后用于串行 Mesh&Collect 收集约 298 个部分数据集(每个样品旋转 10°)。部分数据集被整合和缩放。使用组合部分数据集的遗传算法来选择要合并到单个数据集中的数据集。这个最终数据集显示出高完整性、高多重性和足够的异常信号来定位异常散射体,并提供了相位信息,允许完整的自动追踪多肽链。为了使整个实验在不到 2 小时的时间内完成,这是一个实际可接受的时间框架,因此需要衍射仪和探测器在有限的人工干预下一起运行。几个尖端组件的组合允许从小晶体中准确测量异常信号。