Suppr超能文献

机器人髋关节外骨骼应用的提升技术分类。

Classification of Lifting Techniques for Application of A Robotic Hip Exoskeleton.

机构信息

The BioRobotics Institute, Scuola Superiore Sant'Anna, 56127 Pisa, Italy.

Fondazione Don Carlo Gnocchi, 20148 Milan, Italy.

出版信息

Sensors (Basel). 2019 Feb 25;19(4):963. doi: 10.3390/s19040963.

Abstract

The number of exoskeletons providing load-lifting assistance has significantly increased over the last decade. In this field, to take full advantage of active exoskeletons and provide appropriate assistance to users, it is essential to develop control systems that are able to reliably recognize and classify the users' movement when performing various lifting tasks. To this end, the movement-decoding algorithm should work robustly with different users and recognize different lifting techniques. Currently, there are no studies presenting methods to classify different lifting techniques in real time for applications with lumbar exoskeletons. We designed a real-time two-step algorithm for a portable hip exoskeleton that can detect the onset of the lifting movement and classify the technique used to accomplish the lift, using only the exoskeleton-embedded sensors. To evaluate the performance of the proposed algorithm, 15 healthy male subjects participated in two experimental sessions in which they were asked to perform lifting tasks using four different techniques (namely, squat lifting, stoop lifting, left-asymmetric lifting, and right-asymmetric lifting) while wearing an active hip exoskeleton. Five classes (the four lifting techniques plus the class "no lift") were defined for the classification model, which is based on a set of rules (first step) and a pattern recognition algorithm (second step). Leave-one-subject-out cross-validation showed a recognition accuracy of 99.34 ± 0.85%, and the onset of the lift movement was detected within the first 121 to 166 ms of movement.

摘要

在过去的十年中,提供负载提升辅助的外骨骼数量显著增加。在这个领域,为了充分利用主动外骨骼并为用户提供适当的帮助,开发能够可靠识别和分类用户在执行各种提升任务时的运动的控制系统是至关重要的。为此,运动解码算法应该能够在不同的用户中稳健地工作,并识别不同的提升技术。目前,还没有研究提出实时分类不同提升技术的方法,适用于腰部外骨骼的应用。我们设计了一种实时两步算法,用于便携式臀部外骨骼,可以检测提升运动的开始,并使用仅嵌入外骨骼的传感器来分类完成提升所使用的技术。为了评估所提出算法的性能,15 名健康男性受试者参加了两个实验会议,他们被要求在穿着主动臀部外骨骼的情况下使用四种不同技术(即深蹲提升、弯腰提升、左侧不对称提升和右侧不对称提升)执行提升任务。分类模型定义了五个类别(四种提升技术加“无提升”类别),该模型基于一组规则(第一步)和模式识别算法(第二步)。留一受试者交叉验证的识别准确率为 99.34±0.85%,并且提升运动的起始可以在运动开始后的 121 到 166 毫秒内检测到。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2e8/6412280/097687aad688/sensors-19-00963-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验