Laboratory for Neuromechanics and Biorobotics, Department of Automation, Biocybernetics and Robotics, Jožef Stefan Institute, 1000 Ljubljana, Slovenia.
Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia.
Sensors (Basel). 2020 May 9;20(9):2705. doi: 10.3390/s20092705.
Research and development of active and passive exoskeletons for preventing work related injuries has steadily increased in the last decade. Recently, new types of quasi-passive designs have been emerging. These exoskeletons use passive viscoelastic elements, such as springs and dampers, to provide support to the user, while using small actuators only to change the level of support or to disengage the passive elements. Control of such devices is still largely unexplored, especially the algorithms that predict the movement of the user, to take maximum advantage of the passive viscoelastic elements. To address this issue, we developed a new control scheme consisting of Gaussian mixture models (GMM) in combination with a state machine controller to identify and classify the movement of the user as early as possible and thus provide a timely control output for the quasi-passive spinal exoskeleton. In a leave-one-out cross-validation procedure, the overall accuracy for providing support to the user was 86 . 72 ± 0 . 86 % (mean ± s.d.) with a sensitivity and specificity of 97 . 46 ± 2 . 09 % and 83 . 15 ± 0 . 85 % respectively. The results of this study indicate that our approach is a promising tool for the control of quasi-passive spinal exoskeletons.
在过去十年中,主动和被动外骨骼预防与工作相关的伤害的研究和开发稳步增加。最近,出现了新型的准被动设计。这些外骨骼使用被动粘弹性元件(如弹簧和阻尼器)为用户提供支撑,同时仅使用小型执行器来改变支撑水平或脱离被动元件。这些设备的控制仍然在很大程度上未被探索,特别是预测用户运动的算法,以充分利用被动粘弹性元件。为了解决这个问题,我们开发了一种新的控制方案,由高斯混合模型(GMM)与状态机控制器相结合,以尽早识别和分类用户的运动,从而为准被动脊柱外骨骼提供及时的控制输出。在一次留一交叉验证过程中,为用户提供支撑的总体准确性为 86.72 ± 0.86%(平均值 ± 标准差),灵敏度和特异性分别为 97.46 ± 2.09%和 83.15 ± 0.85%。这项研究的结果表明,我们的方法是控制准被动脊柱外骨骼的有前途的工具。