Université Grenoble Alpes, 38000 Grenoble, France.
Laboratoire de Chimie Théorique (LCT), Sorbonne Université and CNRS, F-75005 Paris, France.
J Chem Phys. 2019 Feb 28;150(8):084112. doi: 10.1063/1.5080330.
A formally exact Bethe-Salpeter-like equation for the linear-response function is introduced with a kernel which depends only on the one frequency of the applied field. This is in contrast with the standard Bethe-Salpeter equation (BSE) which involves multiple-frequency integrals over the kernel and response functions. From the one-frequency kernel, known approximations are straightforwardly recovered. However, the present formalism lends itself to more powerful approximations. This is demonstrated with the exact analytical solution of the Hubbard molecule. Similarities and differences of the GW + BSE approach with the self-consistent random-phase approximation are also discussed.
引入了一个形式精确的、与应用场的一个频率相关的线性响应函数的贝蒂-萨尔皮特(Bethe-Salpeter)型方程,其核函数仅取决于该频率。这与标准的贝蒂-萨尔皮特方程(BSE)形成对比,后者涉及核函数和响应函数的多个频率积分。从单频核函数中,可以直接得到已知的近似。然而,目前的形式主义为更强大的近似提供了可能。这一点通过 Hubbard 分子的精确解析解得到了证明。还讨论了 GW + BSE 方法与自洽随机相位近似之间的相似性和差异。