Department of Biogeography, Trier University, Faculty of Regional and Environmental Sciences, Trier 54286, Germany.
Department of Environmental Science, Policy and Management, University of California, Berkeley, California, 94720, USA.
Gigascience. 2019 May 1;8(5). doi: 10.1093/gigascience/giz006.
In light of the current biodiversity crisis, DNA barcoding is developing into an essential tool to quantify state shifts in global ecosystems. Current barcoding protocols often rely on short amplicon sequences, which yield accurate identification of biological entities in a community but provide limited phylogenetic resolution across broad taxonomic scales. However, the phylogenetic structure of communities is an essential component of biodiversity. Consequently, a barcoding approach is required that unites robust taxonomic assignment power and high phylogenetic utility. A possible solution is offered by sequencing long ribosomal DNA (rDNA) amplicons on the MinION platform (Oxford Nanopore Technologies).
Using a dataset of various animal and plant species, with a focus on arthropods, we assemble a pipeline for long rDNA barcode analysis and introduce a new software (MiniBar) to demultiplex dual indexed Nanopore reads. We find excellent phylogenetic and taxonomic resolution offered by long rDNA sequences across broad taxonomic scales. We highlight the simplicity of our approach by field barcoding with a miniaturized, mobile laboratory in a remote rainforest. We also test the utility of long rDNA amplicons for analysis of community diversity through metabarcoding and find that they recover highly skewed diversity estimates.
Sequencing dual indexed, long rDNA amplicons on the MinION platform is a straightforward, cost-effective, portable, and universal approach for eukaryote DNA barcoding. Although bulk community analyses using long-amplicon approaches may introduce biases, the long rDNA amplicons approach signifies a powerful tool for enabling the accurate recovery of taxonomic and phylogenetic diversity across biological communities.
鉴于当前的生物多样性危机,DNA 条码技术正在发展成为量化全球生态系统状态变化的重要工具。当前的条码协议通常依赖短扩增子序列,这些序列可以准确识别群落中的生物实体,但在广泛的分类尺度上提供有限的系统发育分辨率。然而,群落的系统发育结构是生物多样性的一个重要组成部分。因此,需要一种条码方法,将强大的分类分配能力和高系统发育实用性结合起来。一种可能的解决方案是在 MinION 平台(Oxford Nanopore Technologies)上对长核糖体 DNA(rDNA) 扩增子进行测序。
我们使用了一个包含各种动植物物种的数据集,重点是节肢动物,为长 rDNA 条码分析组装了一个管道,并引入了一个新的软件(MiniBar)来对双索引的纳米孔读取进行解复用。我们发现,长 rDNA 序列在广泛的分类尺度上提供了极好的系统发育和分类分辨率。我们通过在偏远雨林中使用一个小型化、移动的实验室进行野外条码,突出了我们方法的简单性。我们还通过 metabarcoding 测试了长 rDNA 扩增子用于分析群落多样性的实用性,并发现它们能够恢复高度偏斜的多样性估计。
在 MinION 平台上对双索引长 rDNA 扩增子进行测序是一种简单、经济、便携和通用的真核生物 DNA 条码方法。虽然使用长扩增子方法进行批量群落分析可能会引入偏差,但长 rDNA 扩增子方法是一种强大的工具,可以准确地恢复生物群落中的分类和系统发育多样性。