Suppr超能文献

数字图像分析为 I-IV 期结直肠癌患者提供了基于组织微环境的稳健预后标志物。

Digital image analysis provides robust tissue microenvironment-based prognosticators in patients with stage I-IV colorectal cancer.

机构信息

Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Üllői őt 26, H-1085, Hungary; Interdisciplinary Gastroenterology Working Group, Semmelweis University, Budapest, Üllői út 78, H-1082, Hungary.

Interdisciplinary Gastroenterology Working Group, Semmelweis University, Budapest, Üllői út 78, H-1082, Hungary; Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, Budapest, Üllői út 78, H-1082, Hungary.

出版信息

Hum Pathol. 2022 Oct;128:141-151. doi: 10.1016/j.humpath.2022.07.003. Epub 2022 Jul 9.

Abstract

In patients with colorectal cancer (CRC), a promising marker is tumor-stroma ratio (TSR). Quantification issues highlight the importance of precise assessment that might be solved by artificial intelligence-based digital image analysis systems. Some alternatives have been offered so far, although these platforms are either proprietary developments or require additional programming skills. Our aim was to validate a user-friendly, commercially available software running in everyday computational environment to improve TSR assessment and also to compare the prognostic value of assessing TSR in 3 distinct regions of interests, like hotspot, invasive front, and whole tumor. Furthermore, we compared the prognostic power of TSR with the newly suggested carcinoma percentage (CP) and carcinoma-stroma percentage (CSP). Slides of 185 patients with stage I-IV CRC with clinical follow-up data were scanned and evaluated by a senior pathologist. A machine learning-based digital pathology software was trained to recognize tumoral and stromal compartments. The aforementioned parameters were evaluated in the hotspot, invasive front, and whole tumor area, both visually and by machine learning. Patients were classified based on TSR, CP, and CSP values. On multivariate analysis, TSR-hotspot was found to be an independent prognostic factor of overall survival (hazard ratio for TSR-hotspot: 2.005 [95% confidence interval (CI): 1.146-3.507], P = .011, for TSR-hotspot: 1.781 [CI: 1.060-2.992], P = .029). Also, TSR was an independent predictor for distant metastasis and local relapse in most settings. Generally, software performance was comparable to visual evaluation and delivered reliable prognostication in more settings also with CP and CSP values. This study presents that software-assisted evaluation is a robust prognosticator. Our approach used a less sophisticated and thus easily accessible software without the aid of a convolutional neural network; however, it was still effective enough to deliver reliable prognostic information.

摘要

在结直肠癌(CRC)患者中,肿瘤基质比(TSR)是一种很有前途的标志物。定量问题突出了精确评估的重要性,而人工智能为基础的数字图像分析系统可能会解决这个问题。到目前为止,已经提出了一些替代方案,尽管这些平台要么是专有的开发,要么需要额外的编程技能。我们的目的是验证一种用户友好的、商业上可用的软件,该软件在日常计算环境中运行,以提高 TSR 评估的准确性,并比较在 3 个不同感兴趣区域(热点、浸润前沿和整个肿瘤)评估 TSR 的预后价值。此外,我们还比较了 TSR 与新提出的癌百分比(CP)和癌基质百分比(CSP)的预后能力。对 185 例具有临床随访数据的 I-IV 期 CRC 患者的切片进行扫描,并由一名资深病理学家进行评估。基于机器学习的数字病理学软件被训练来识别肿瘤和基质区域。上述参数在热点、浸润前沿和整个肿瘤区域进行了视觉和基于机器学习的评估。患者根据 TSR、CP 和 CSP 值进行分类。多变量分析发现,TSR-热点是总生存的独立预后因素(TSR-热点的危险比:2.005[95%置信区间(CI):1.146-3.507],P=0.011,TSR-热点:1.781[CI:1.060-2.992],P=0.029)。此外,在大多数情况下,TSR 也是远处转移和局部复发的独立预测因子。一般来说,在大多数情况下,软件性能与视觉评估相当,并能提供可靠的预后,同时也能提供 CP 和 CSP 值。本研究表明,软件辅助评估是一种可靠的预后预测指标。我们的方法使用了一种不那么复杂、因此更容易获得的软件,而无需卷积神经网络的帮助;然而,它仍然足够有效,可以提供可靠的预后信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验