John-Herpin Aurelian, Tittl Andreas, Altug Hatice
Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland.
ACS Photonics. 2018 Oct 17;5(10):4117-4124. doi: 10.1021/acsphotonics.8b00847. Epub 2018 Sep 10.
Infrared spectroscopy is widely used for biomolecular studies, but struggles when investigating minute quantities of analytes due to the mismatch between vibrational cross sections and IR wavelengths. It is therefore beneficial to enhance absorption signals by confining the infrared light to deeply subwavelength volumes comparable in size to the biomolecules of interest. This can be achieved with surface-enhanced infrared absorption spectroscopy, for which plasmonic nanorod antennas represent the predominant implementation. However, unifying design guidelines for such systems are still lacking. Here, we introduce an experimentally verified framework for designing antenna-based molecular IR spectroscopy sensors. Specifically, we find that in order to maximize the sensing performance, it is essential to combine the signal enhancement originating from nanoscale gaps between the antenna elements with the enhancement obtained from coupling to the grating order modes of the unit cell. Using an optimized grating order-coupled nanogap design, our experiments and numerical simulations show a hotspot limit of detection of two proteins per nanogap. Furthermore, we introduce and analyze additional limit of detection parameters, specifically for deposited surface mass, in-solution concentration, and secondary structure determination. These limits of detection provide valuable reference points for performance metrics of surface-enhanced infrared absorption spectroscopy in practical applications, such as the characterization of biological samples in aqueous solution.
红外光谱在生物分子研究中被广泛应用,但在研究微量分析物时却面临困难,这是由于振动截面与红外波长不匹配所致。因此,通过将红外光限制在与目标生物分子大小相当的深亚波长体积内来增强吸收信号是有益的。这可以通过表面增强红外吸收光谱来实现,其中等离子体纳米棒天线是主要的实现方式。然而,此类系统仍缺乏统一的设计准则。在此,我们引入了一个经过实验验证的基于天线的分子红外光谱传感器设计框架。具体而言,我们发现为了使传感性能最大化,必须将源自天线元件之间纳米级间隙的信号增强与从耦合到单元晶格的光栅级模式所获得的增强相结合。使用优化的光栅级耦合纳米间隙设计,我们的实验和数值模拟表明每个纳米间隙对两种蛋白质的热点检测极限。此外,我们引入并分析了其他检测极限参数,特别是针对沉积表面质量、溶液中浓度和二级结构测定的参数。这些检测极限为表面增强红外吸收光谱在实际应用中的性能指标提供了有价值的参考点,例如在水溶液中对生物样品的表征。