Suppr超能文献

通过尿素配合物制备的非常规铈钇铝石榴石纳米结构

Non-conventional Ce:YAG nanostructures via urea complexes.

作者信息

Armetta Francesco, Saladino Maria Luisa, Giordano Cristina, Defilippi Chiara, Marciniak Łukasz, Hreniak Dariusz, Caponetti Eugenio

机构信息

Dipartimento Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche - STEBICEF and INSTM UdR - Palermo, Università di Palermo, Parco d'Orleans II, Viale delle Scienze pad. 17, Palermo, I-90128, Italy.

School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom.

出版信息

Sci Rep. 2019 Mar 4;9(1):3368. doi: 10.1038/s41598-019-39069-6.

Abstract

Ce:YAG nanostructures (Ce:YAG = Cerium in Yttrium Aluminium Garnet), easy to control and shape, have been prepared via templating approach using natural and synthetic materials (i.e. paper, cotton wool and glass wool) previously soaked with a gel-like metals precursor and then thermally treated to achieve the wished morphology. The final material, otherwise difficult to process, can be easily moulded, it is lightweight, portable and forms, at the nanoscale, homogeneous layers of interconnected but not agglomerated nanoparticles (15 ± 5 nm). Using the same synthetic route, called Urea-Glass-Route, but in absence of a template, extremely pure Ce:YAG nanoparticle (45 ± 5 nm) can be also prepared, highly crystalline and well-defined in size and shape. Both structural and optical properties of the final materials were investigated, showing high optical quality. The support allows the production of a multifunctional material with mouldable shape and potential lighting application for large structures combining the strength, chemical durability, fire resistance, and translucency of glass fibres. Last, but not least, the synthetic path also allows an easy scaling up of the process: the first, key step for practical application of nanosized rare-earth doped YAG on large scale.

摘要

铈掺杂钇铝石榴石(Ce:YAG = 钇铝石榴石中的铈)纳米结构易于控制和塑形,已通过模板法制备而成,该方法使用预先浸泡过凝胶状金属前驱体的天然和合成材料(如纸张、棉绒和玻璃棉),然后进行热处理以实现所需的形态。最终材料原本难以加工,但现在可以轻松成型,重量轻、便于携带,并且在纳米尺度上形成相互连接但不团聚的纳米颗粒(15 ± 5纳米)的均匀层。使用相同的合成路线,即尿素-玻璃路线,但不使用模板,也可以制备出极其纯净的铈掺杂钇铝石榴石纳米颗粒(45 ± 5纳米),其结晶度高,尺寸和形状明确。对最终材料的结构和光学性质都进行了研究,结果显示其光学质量很高。这种载体能够生产出具有可塑形状的多功能材料,并在大型结构中具有潜在的照明应用,它结合了玻璃纤维的强度、化学耐久性、耐火性和半透明性。最后但同样重要的是,该合成路线还便于扩大工艺规模:这是纳米尺寸稀土掺杂钇铝石榴石大规模实际应用的关键第一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef97/6399219/02d9917d3d07/41598_2019_39069_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验