Suppr超能文献

在玫瑰中,转录因子 PTM 通过 PIP2;1 水通道蛋白平衡生长和干旱存活。

In rose, transcription factor PTM balances growth and drought survival via PIP2;1 aquaporin.

机构信息

Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China.

The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang Agriculture & Forestry University, Lin'an, China.

出版信息

Nat Plants. 2019 Mar;5(3):290-299. doi: 10.1038/s41477-019-0376-1. Epub 2019 Mar 4.

Abstract

Plants have evolved sophisticated systems in response to environmental changes, and growth arrest is a common strategy used to enhance stress tolerance. Despite the growth-survival trade-off being essential to the shaping of plant productivity, the mechanisms balancing growth and survival remain largely unknown. Aquaporins play a crucial role in growth and stress responses by controlling water transport across membranes. Here, we show that RhPIP2;1, an aquaporin from rose (Rosa sp.), interacts with a membrane-tethered MYB protein, RhPTM. Water deficiency triggers nuclear translocation of the RhPTM C terminus. Silencing of RhPTM causes continuous growth under drought stress and a consequent decrease in survival rate. RNA sequencing (RNA-seq) indicated that RhPTM influences the expression of genes related to carbohydrate metabolism. Water deficiency induces phosphorylation of RhPIP2;1 at Ser 273, which is sufficient to promote nuclear translocation of the RhPTM C terminus. These results indicate that the RhPIP2;1-RhPTM module serves as a key player in orchestrating the trade-off between growth and stress survival in Rosa.

摘要

植物已经进化出复杂的系统来应对环境变化,生长停滞是一种增强胁迫耐受性的常用策略。尽管生长-存活权衡对于塑造植物生产力至关重要,但平衡生长和存活的机制在很大程度上仍然未知。水通道蛋白通过控制跨膜的水分运输在生长和应激反应中发挥着关键作用。在这里,我们表明玫瑰(Rosa sp.)中的水通道蛋白 RhPIP2;1 与膜结合的 MYB 蛋白 RhPTM 相互作用。水分不足会触发 RhPTM C 端的核易位。沉默 RhPTM 会导致在干旱胁迫下持续生长,从而导致存活率下降。RNA 测序(RNA-seq)表明 RhPTM 影响与碳水化合物代谢相关基因的表达。水分不足会诱导 RhPIP2;1 丝氨酸 273 位的磷酸化,这足以促进 RhPTM C 端的核易位。这些结果表明,RhPIP2;1-RhPTM 模块在协调玫瑰中生长和应激存活之间的权衡中起着关键作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验