Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic.
Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic.
Plant J. 2019 Jun;98(6):1090-1105. doi: 10.1111/tpj.14304. Epub 2019 Apr 12.
Telomeres and ribosomal RNA genes (rDNA) are essential for cell survival and particularly sensitive to factors affecting genome stability. Here, we examine the role of RAD51 and its antagonist, RTEL1, in the moss Physcomitrella patens. In corresponding mutants, we analyse their sensitivity to DNA damage, the maintenance of telomeres and rDNA, and repair of double-stranded breaks (DSBs) induced by genotoxins with various modes of action. While the loss of RTEL1 results in rapid telomere shortening, concurrent loss of both RAD51 genes has no effect on telomere lengths. We further demonstrate here the linked arrangement of 5S and 45S rRNA genes in P. patens. The spacer between 5S and 18S rRNA genes, especially the region downstream from the transcription start site, shows conspicuous clustering of sites with a high propensity to form quadruplex (G4) structures. Copy numbers of 5S and 18S rDNA are reduced moderately in the pprtel1 mutant, and significantly in the double pprad51-1-2 mutant, with no progression during subsequent cultivation. While reductions in 45S rDNA copy numbers observed in pprtel1 and pprad51-1-2 plants apply also to 5S rDNA, changes in transcript levels are different for 45S and 5S rRNA, indicating their independent transcription by RNA polymerase I and III, respectively. The loss of SOL (Sog One-Like), a transcription factor regulating numerous genes involved in DSB repair, increases the rate of DSB repair in dividing as well as differentiated tissue, and through deactivation of G2/M cell-cycle checkpoint allows the cell-cycle progression manifested as a phenotype resistant to bleomycin.
端粒和核糖体 RNA 基因(rDNA)对于细胞存活至关重要,并且特别容易受到影响基因组稳定性的因素的影响。在这里,我们研究了 RAD51 及其拮抗剂 RTEL1 在苔藓植物Physcomitrella patens 中的作用。在相应的突变体中,我们分析了它们对 DNA 损伤的敏感性、端粒和 rDNA 的维持以及不同作用模式的遗传毒物诱导的双链断裂(DSB)的修复。虽然 RTEL1 的缺失会导致端粒迅速缩短,但同时缺失两个 RAD51 基因对端粒长度没有影响。我们进一步证明了 P. patens 中 5S 和 45S rRNA 基因的连锁排列。5S 和 18S rRNA 基因之间的间隔区,特别是转录起始位点下游的区域,显示出形成四链体(G4)结构的高倾向位点的明显聚集。在 pprtel1 突变体中,5S 和 18S rDNA 的拷贝数适度减少,在双 pprad51-1-2 突变体中显著减少,随后培养过程中没有进展。虽然在 pprtel1 和 pprad51-1-2 植物中观察到的 45S rDNA 拷贝数减少也适用于 5S rDNA,但 45S 和 5S rRNA 的转录水平变化不同,表明它们分别由 RNA 聚合酶 I 和 III 独立转录。转录因子 SOL(Sog One-Like)的缺失,调节许多参与 DSB 修复的基因,增加了有丝分裂和分化组织中 DSB 修复的速度,并通过失活 G2/M 细胞周期检查点允许细胞周期进展,表现为对博来霉素有抗性的表型。