Suppr超能文献

基于脉冲小脑模型的人形iCub机器人上的前庭眼反射适应性

VOR Adaptation on a Humanoid iCub Robot Using a Spiking Cerebellar Model.

作者信息

Naveros Francisco, Luque Niceto R, Ros Eduardo, Arleo Angelo

出版信息

IEEE Trans Cybern. 2019 Feb 27. doi: 10.1109/TCYB.2019.2899246.

Abstract

We embed a spiking cerebellar model within an adaptive real-time (RT) control loop that is able to operate a real robotic body (iCub) when performing different vestibulo-ocular reflex (VOR) tasks. The spiking neural network computation, including event- and time-driven neural dynamics, neural activity, and spike-timing dependent plasticity (STDP) mechanisms, leads to a nondeterministic computation time caused by the neural activity volleys encountered during cerebellar simulation. This nondeterministic computation time motivates the integration of an RT supervisor module that is able to ensure a well-orchestrated neural computation time and robot operation. Actually, our neurorobotic experimental setup (VOR) benefits from the biological sensory motor delay between the cerebellum and the body to buffer the computational overloads as well as providing flexibility in adjusting the neural computation time and RT operation. The RT supervisor module provides for incremental countermeasures that dynamically slow down or speed up the cerebellar simulation by either halting the simulation or disabling certain neural computation features (i.e., STDP mechanisms, spike propagation, and neural updates) to cope with the RT constraints imposed by the real robot operation. This neurorobotic experimental setup is applied to different horizontal and vertical VOR adaptive tasks that are widely used by the neuroscientific community to address cerebellar functioning. We aim to elucidate the manner in which the combination of the cerebellar neural substrate and the distributed plasticity shapes the cerebellar neural activity to mediate motor adaptation. This paper underlies the need for a two-stage learning process to facilitate VOR acquisition.

摘要

我们将一个脉冲小脑模型嵌入到一个自适应实时(RT)控制回路中,该回路在执行不同的前庭眼反射(VOR)任务时能够操作真实的机器人身体(iCub)。脉冲神经网络计算,包括事件驱动和时间驱动的神经动力学、神经活动以及脉冲时间依赖可塑性(STDP)机制,会导致在小脑模拟过程中由于遇到神经活动群而产生不确定的计算时间。这种不确定的计算时间促使集成一个RT监督模块,该模块能够确保精心编排的神经计算时间和机器人操作。实际上,我们的神经机器人实验装置(VOR)受益于小脑与身体之间的生物感觉运动延迟,以缓冲计算过载,并在调整神经计算时间和RT操作方面提供灵活性。RT监督模块提供增量对策,通过暂停模拟或禁用某些神经计算特征(即STDP机制、脉冲传播和神经更新)来动态减慢或加快小脑模拟,以应对真实机器人操作所施加的RT约束。这种神经机器人实验装置应用于神经科学界广泛用于研究小脑功能的不同水平和垂直VOR自适应任务。我们旨在阐明小脑神经基质和分布式可塑性的组合塑造小脑神经活动以介导运动适应的方式。本文强调了需要一个两阶段学习过程来促进VOR习得。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验