Suppr超能文献

基于自适应生物灵感小脑模块的仿人机器人在三维运动任务中的控制。

Control of a Humanoid NAO Robot by an Adaptive Bioinspired Cerebellar Module in 3D Motion Tasks.

机构信息

Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy.

Department of Brain and Behavioral Sciences, University of Pavia, Brain Connectivity Center Istituto Neurologico IRCCS Fondazione C. Mondino, Pavia, Italy.

出版信息

Comput Intell Neurosci. 2019 Jan 27;2019:4862157. doi: 10.1155/2019/4862157. eCollection 2019.

Abstract

A bioinspired adaptive model, developed by means of a spiking neural network made of thousands of artificial neurons, has been leveraged to control a humanoid NAO robot in real time. The learning properties of the system have been challenged in a classic cerebellum-driven paradigm, a perturbed upper limb reaching protocol. The neurophysiological principles used to develop the model succeeded in driving an adaptive motor control protocol with baseline, acquisition, and extinction phases. The spiking neural network model showed learning behaviours similar to the ones experimentally measured with human subjects in the same task in the acquisition phase, while resorted to other strategies in the extinction phase. The model processed in real-time external inputs, encoded as spikes, and the generated spiking activity of its output neurons was decoded, in order to provide the proper correction on the motor actuators. Three bidirectional long-term plasticity rules have been embedded for different connections and with different time scales. The plasticities shaped the firing activity of the output layer neurons of the network. In the perturbed upper limb reaching protocol, the neurorobot successfully learned how to compensate for the external perturbation generating an appropriate correction. Therefore, the spiking cerebellar model was able to reproduce in the robotic platform how biological systems deal with external sources of error, in both ideal and real (noisy) environments.

摘要

一种受生物启发的自适应模型,通过由数千个人工神经元组成的尖峰神经网络来开发,已被用于实时控制仿人机器人。该系统的学习特性在经典的小脑驱动范式中受到了挑战,即受扰上肢伸展协议。用于开发该模型的神经生理学原理成功地驱动了具有基线、获取和消除阶段的自适应运动控制协议。尖峰神经网络模型在获取阶段表现出与在相同任务中用人类受试者进行的实验测量相似的学习行为,而在消除阶段则采用了其他策略。该模型实时处理作为尖峰的外部输入,并且对其输出神经元产生的尖峰活动进行解码,以便在运动执行器上提供适当的校正。已经嵌入了三个双向的长时程可塑性规则,用于不同的连接和不同的时间尺度。这些可塑性塑造了网络输出层神经元的发射活动。在受扰的上肢伸展协议中,神经机器人成功地学会了如何补偿外部干扰,从而产生适当的校正。因此,尖峰小脑模型能够在机器人平台上再现生物系统如何在理想和真实(噪声)环境中处理外部误差源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f23/6369512/c78ea4d39bb9/CIN2019-4862157.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验