Suppr超能文献

两个比例之差的非迭代精确渐近置信区间。

A non-iterative accurate asymptotic confidence interval for the difference between two proportions.

作者信息

Wallenstein S

机构信息

Biomathematical Sciences Department, Mount Sinai Medical Center, New York, NY 10029, USA.

出版信息

Stat Med. 1997 Jun 30;16(12):1329-36. doi: 10.1002/(sici)1097-0258(19970630)16:12<1329::aid-sim567>3.0.co;2-i.

Abstract

I propose a new confidence interval for the difference between two binomial probabilities that requires only the solution of a quadratic equation. The procedure is based one estimating the variance of the observed difference at the boundaries of the confidence interval, and uses least squares estimation rather than maximum likelihood as previously suggested. The proposed procedure is non-iterative, agrees with the conventional test of equality of two binomial probabilities, and, even for fairly small sample sizes, appears to yields actual 95 per cent confidence intervals with mean or median probabilities of coverage very close to 0.95. The Yates continuity correction appears to generate confidence intervals with the conditional probability of coverage at least equal to nominal levels.

摘要

我提出了一种用于两个二项式概率之差的新置信区间,该区间只需要求解一个二次方程。此方法基于在置信区间边界处估计观察到的差异的方差,并使用最小二乘法估计,而不是像之前建议的那样使用最大似然估计。所提出的方法是非迭代的,与两个二项式概率相等性的传统检验一致,并且即使对于相当小的样本量,似乎也能产生实际的95%置信区间,其覆盖概率的均值或中位数非常接近0.95。耶茨连续性校正似乎能生成覆盖条件概率至少等于名义水平的置信区间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验