Suppr超能文献

宿主分类预测器 - 一种预测新发现病毒宿主分类的工具。

Host Taxon Predictor - A Tool for Predicting Taxon of the Host of a Newly Discovered Virus.

机构信息

Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, ul. Gronostajowa 7, 30-387, Kraków, Poland.

AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. Mickiewicza 30, 30-059, Kraków, Poland.

出版信息

Sci Rep. 2019 Mar 5;9(1):3436. doi: 10.1038/s41598-019-39847-2.

Abstract

Recent advances in metagenomics provided a valuable alternative to culture-based approaches for better sampling viral diversity. However, some of newly identified viruses lack sequence similarity to any of previously sequenced ones, and cannot be easily assigned to their hosts. Here we present a bioinformatic approach to this problem. We developed classifiers capable of distinguishing eukaryotic viruses from the phages achieving almost 95% prediction accuracy. The classifiers are wrapped in Host Taxon Predictor (HTP) software written in Python which is freely available at https://github.com/wojciech-galan/viruses_classifier . HTP's performance was later demonstrated on a collection of newly identified viral genomes and genome fragments. In summary, HTP is a culture- and alignment-free approach for distinction between phages and eukaryotic viruses. We have also shown that it is possible to further extend our method to go up the evolutionary tree and predict whether a virus can infect narrower taxa.

摘要

宏基因组学的最新进展为更好地采样病毒多样性提供了一种有价值的替代培养方法。然而,一些新发现的病毒与以前测序的任何病毒都没有序列相似性,并且不容易将其分配给宿主。在这里,我们提出了一种解决这个问题的生物信息学方法。我们开发了能够区分真核病毒和噬菌体的分类器,实现了近 95%的预测准确性。分类器被包装在 Python 编写的宿主分类器(Host Taxon Predictor,HTP)软件中,可在 https://github.com/wojciech-galan/viruses_classifier 上免费获得。HTP 的性能后来在一组新鉴定的病毒基因组和基因组片段上得到了验证。总之,HTP 是一种无需培养和对齐即可区分噬菌体和真核病毒的方法。我们还表明,有可能进一步扩展我们的方法,沿着进化树前进,并预测病毒是否可以感染更窄的分类群。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c82f/6400966/48276707adc7/41598_2019_39847_Fig1_HTML.jpg

相似文献

1
Host Taxon Predictor - A Tool for Predicting Taxon of the Host of a Newly Discovered Virus.
Sci Rep. 2019 Mar 5;9(1):3436. doi: 10.1038/s41598-019-39847-2.
3
Virus detection in high-throughput sequencing data without a reference genome of the host.
Infect Genet Evol. 2018 Dec;66:180-187. doi: 10.1016/j.meegid.2018.09.026. Epub 2018 Oct 3.
4
Robust Analysis of Time Series in Virome Metagenomics.
Methods Mol Biol. 2018;1838:245-260. doi: 10.1007/978-1-4939-8682-8_17.
5
Bioinformatic Approaches for Comparative Analysis of Viruses.
Methods Mol Biol. 2018;1704:401-417. doi: 10.1007/978-1-4939-7463-4_15.
6
Prediction of virus-host infectious association by supervised learning methods.
BMC Bioinformatics. 2017 Mar 14;18(Suppl 3):60. doi: 10.1186/s12859-017-1473-7.
8
Predicting host taxonomic information from viral genomes: A comparison of feature representations.
PLoS Comput Biol. 2020 May 26;16(5):e1007894. doi: 10.1371/journal.pcbi.1007894. eCollection 2020 May.
10
Diversity Analysis in Viral Metagenomes.
Methods Mol Biol. 2018;1838:203-230. doi: 10.1007/978-1-4939-8682-8_15.

引用本文的文献

4
PacBio sequencing of human fecal samples uncovers the DNA methylation landscape of 22 673 gut phages.
Nucleic Acids Res. 2023 Dec 11;51(22):12140-12149. doi: 10.1093/nar/gkad977.
5
Using machine learning to detect coronaviruses potentially infectious to humans.
Sci Rep. 2023 Jun 8;13(1):9319. doi: 10.1038/s41598-023-35861-7.
6
Classification of Highly Divergent Viruses from DNA/RNA Sequence Using Transformer-Based Models.
Biomedicines. 2023 Apr 28;11(5):1323. doi: 10.3390/biomedicines11051323.
7
iPHoP: An integrated machine learning framework to maximize host prediction for metagenome-derived viruses of archaea and bacteria.
PLoS Biol. 2023 Apr 21;21(4):e3002083. doi: 10.1371/journal.pbio.3002083. eCollection 2023 Apr.
8
Detection of specific uncultured bacteriophages by fluorescence in situ hybridisation in pig microbiome.
PLoS One. 2023 Mar 30;18(3):e0283676. doi: 10.1371/journal.pone.0283676. eCollection 2023.
9
Bioinformatics approaches for unveiling virus-host interactions.
Comput Struct Biotechnol J. 2023;21:1774-1784. doi: 10.1016/j.csbj.2023.02.044. Epub 2023 Feb 27.
10
Computational Tools for the Analysis of Uncultivated Phage Genomes.
Microbiol Mol Biol Rev. 2022 Jun 15;86(2):e0000421. doi: 10.1128/mmbr.00004-21. Epub 2022 Mar 21.

本文引用的文献

1
MARVEL, a Tool for Prediction of Bacteriophage Sequences in Metagenomic Bins.
Front Genet. 2018 Aug 7;9:304. doi: 10.3389/fgene.2018.00304. eCollection 2018.
2
Why are RNA virus mutation rates so damn high?
PLoS Biol. 2018 Aug 13;16(8):e3000003. doi: 10.1371/journal.pbio.3000003. eCollection 2018 Aug.
5
A human gut phage catalog correlates the gut phageome with type 2 diabetes.
Microbiome. 2018 Feb 1;6(1):24. doi: 10.1186/s40168-018-0410-y.
6
Amyloidogenic motifs revealed by n-gram analysis.
Sci Rep. 2017 Oct 11;7(1):12961. doi: 10.1038/s41598-017-13210-9.
7
Review article: the human intestinal virome in health and disease.
Aliment Pharmacol Ther. 2017 Nov;46(9):800-815. doi: 10.1111/apt.14280. Epub 2017 Sep 4.
9
Highly divergent cyclo-like virus in a great roundleaf bat (Hipposideros armiger) in Vietnam.
Arch Virol. 2017 Aug;162(8):2403-2407. doi: 10.1007/s00705-017-3377-2. Epub 2017 Apr 26.
10
Current Advances on Virus Discovery and Diagnostic Role of Viral Metagenomics in Aquatic Organisms.
Front Microbiol. 2017 Mar 22;8:406. doi: 10.3389/fmicb.2017.00406. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验