VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA, USA.
Stanford University, Psychiatry and Behavioral Sciences/Bioengineering, Stanford, CA, USA.
Sci Rep. 2019 Mar 5;9(1):3607. doi: 10.1038/s41598-019-40398-9.
The thalamic reticular nucleus (TRN) is implicated in schizophrenia pathology. However, it remains unclear whether alterations of TRN activity can account for abnormal electroencephalographic activity observed in patients, namely reduced spindles (10-15 Hz) during sleep and increased delta (0.5-4 Hz) and gamma-band activity (30-80 Hz) during wakefulness. Here, we utilized optogenetic and reverse-microdialysis approaches to modulate activity of the major subpopulation of TRN GABAergic neurons, which express the calcium-binding protein parvalbumin (PV), and are implicated in schizophrenia dysfunction. An automated algorithm with enhanced efficiency and reproducibility compared to manual detection was used for sleep spindle assessment. A novel, low power, waxing-and-waning optogenetic stimulation paradigm preferentially induced spindles that were indistinguishable from spontaneously occurring sleep spindles without altering the behavioral state, when compared to a single pulse laser stimulation used by us and others. Direct optogenetic inhibition of TRN-PV neurons was ineffective in blocking spindles but increased both wakefulness and cortical delta/gamma activity, as well as impaired the 40 Hz auditory steady-state response. For the first time we demonstrate that spindle density is markedly reduced by (i) optogenetic stimulation of a major GABA/PV inhibitory input to TRN arising from basal forebrain parvalbumin neurons (BF-PV) and; (ii) localized pharmacological inhibition of low-threshold calcium channels, implicated as a genetic risk factor for schizophrenia. Together with clinical findings, our results support impaired TRN-PV neuron activity as a potential cause of schizophrenia-linked abnormalities in cortical delta, gamma, and spindle activity. Modulation of the BF-PV input to TRN may improve these neural abnormalities.
丘脑网状核 (TRN) 与精神分裂症的病理有关。然而,目前尚不清楚 TRN 活动的改变是否可以解释患者中观察到的异常脑电图活动,即睡眠期间减少的纺锤波(10-15 Hz)和清醒期间增加的 delta 波(0.5-4 Hz)和伽马波段活动(30-80 Hz)。在这里,我们利用光遗传学和逆行微透析方法来调节表达钙结合蛋白 parvalbumin (PV) 的 TRN GABA 能神经元的主要亚群的活动,这些神经元与精神分裂症功能障碍有关。与手动检测相比,我们使用了一种具有更高效率和可重复性的自动算法来评估睡眠纺锤波。与我们和其他人使用的单脉冲激光刺激相比,新型低功率、渐强渐弱的光遗传学刺激范式优先诱导与自发发生的睡眠纺锤波无法区分的纺锤波,而不会改变行为状态。直接光遗传学抑制 TRN-PV 神经元不能有效阻断纺锤波,但增加了清醒和皮质 delta/gamma 活动,并损害了 40 Hz 听觉稳态反应。我们首次证明,通过 (i) 来自基底前脑 parvalbumin 神经元 (BF-PV) 的 GABA/PV 抑制性输入的主要 TRN 光遗传学刺激,以及 (ii) 局部药理学抑制低阈值钙通道,可显著降低纺锤波密度,低阈值钙通道被认为是精神分裂症的遗传风险因素。结合临床发现,我们的结果支持 TRN-PV 神经元活动受损是皮质 delta、gamma 和纺锤波活动与精神分裂症相关异常的潜在原因。调节 TRN 到 BF-PV 的输入可能会改善这些神经异常。