Bakoz Andrei P, Liles Alexandros A, Gonzalez-Fernandez Alfredo A, Habruseva Tatiana, Hu Changyu, Viktorov Evgeny A, Hegarty Stephen P, O'Faolain Liam
1Centre for Advanced Photonics and Process Analysis & Department of Physical Sciences, Cork Institute of Technology, Cork, T12P928 Ireland.
2Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, Cork, T12R5CP Ireland.
Light Sci Appl. 2018 Jul 25;7:39. doi: 10.1038/s41377-018-0043-8. eCollection 2018.
The need for miniaturized, fully integrated semiconductor lasers has stimulated significant research efforts into realizing unconventional configurations that can meet the performance requirements of a large spectrum of applications, ranging from communication systems to sensing. We demonstrate a hybrid, silicon photonics-compatible photonic crystal (PhC) laser architecture that can be used to implement cost-effective, high-capacity light sources, with high side-mode suppression ratio and milliwatt output output powers. The emitted wavelength is set and controlled by a silicon PhC cavity-based reflective filter with the gain provided by a III-V-based reflective semiconductor optical amplifier (RSOA). The high power density in the laser cavity results in a significant enhancement of the nonlinear absorption in silicon in the high -factor PhC resonator. The heat generated in this manner creates a tuning effect in the wavelength-selective element, which can be used to offset external temperature fluctuations without the use of active cooling. Our approach is fully compatible with existing fabrication and integration technologies, providing a practical route to integrated lasing in wavelength-sensitive schemes.
对小型化、完全集成的半导体激光器的需求激发了大量研究工作,旨在实现能够满足从通信系统到传感等广泛应用性能要求的非常规配置。我们展示了一种混合的、与硅光子学兼容的光子晶体(PhC)激光器架构,可用于实现具有高边模抑制比和毫瓦级输出功率的经济高效、高容量光源。发射波长由基于硅PhC腔的反射滤波器设定和控制,增益由基于III-V族的反射半导体光放大器(RSOA)提供。激光腔内的高功率密度导致高品质因数PhC谐振器中硅的非线性吸收显著增强。以这种方式产生的热量在波长选择元件中产生调谐效应,可用于抵消外部温度波动,而无需使用主动冷却。我们的方法与现有的制造和集成技术完全兼容,为波长敏感方案中的集成激光提供了一条实用途径。