Suppr超能文献

脂肪分割网络:一种用于腹部狄克逊磁共振成像上脂肪组织分割的全自动深度学习流程。

FatSegNet: A fully automated deep learning pipeline for adipose tissue segmentation on abdominal dixon MRI.

作者信息

Estrada Santiago, Lu Ran, Conjeti Sailesh, Orozco-Ruiz Ximena, Panos-Willuhn Joana, Breteler Monique M B, Reuter Martin

机构信息

Image Analysis, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.

Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.

出版信息

Magn Reson Med. 2020 Apr;83(4):1471-1483. doi: 10.1002/mrm.28022. Epub 2019 Oct 21.

Abstract

PURPOSE

Introduce and validate a novel, fast, and fully automated deep learning pipeline (FatSegNet) to accurately identify, segment, and quantify visceral and subcutaneous adipose tissue (VAT and SAT) within a consistent, anatomically defined abdominal region on Dixon MRI scans.

METHODS

FatSegNet is composed of three stages: (a) Consistent localization of the abdominal region using two 2D-Competitive Dense Fully Convolutional Networks (CDFNet), (b) Segmentation of adipose tissue on three views by independent CDFNets, and (c) View aggregation. FatSegNet is validated by: (1) comparison of segmentation accuracy (sixfold cross-validation), (2) test-retest reliability, (3) generalizability to randomly selected manually re-edited cases, and (4) replication of age and sex effects in the Rhineland Study-a large prospective population cohort.

RESULTS

The CDFNet demonstrates increased accuracy and robustness compared to traditional deep learning networks. FatSegNet Dice score outperforms manual raters on VAT (0.850 vs. 0.788) and produces comparable results on SAT (0.975 vs. 0.982). The pipeline has excellent agreement for both test-retest (ICC VAT 0.998 and SAT 0.996) and manual re-editing (ICC VAT 0.999 and SAT 0.999).

CONCLUSIONS

FatSegNet generalizes well to different body shapes, sensitively replicates known VAT and SAT volume effects in a large cohort study and permits localized analysis of fat compartments. Furthermore, it can reliably analyze a 3D Dixon MRI in ∼1 minute, providing an efficient and validated pipeline for abdominal adipose tissue analysis in the Rhineland Study.

摘要

目的

引入并验证一种新型、快速且全自动的深度学习管道(FatSegNet),以在迪克森MRI扫描的一致、解剖学定义的腹部区域内准确识别、分割和量化内脏及皮下脂肪组织(VAT和SAT)。

方法

FatSegNet由三个阶段组成:(a)使用两个二维竞争性密集全卷积网络(CDFNet)对腹部区域进行一致定位,(b)通过独立的CDFNet在三个视图上分割脂肪组织,以及(c)视图聚合。通过以下方式对FatSegNet进行验证:(1)分割准确性比较(六折交叉验证),(2)重测信度,(3)对随机选择的手动重新编辑病例的可推广性,以及(4)在莱茵兰研究(一项大型前瞻性人群队列研究)中复制年龄和性别效应。

结果

与传统深度学习网络相比,CDFNet显示出更高的准确性和鲁棒性。FatSegNet在VAT上的骰子系数得分优于人工评分者(0.850对0.788),在SAT上产生了可比的结果(0.975对0.982)。该管道在重测(VAT的组内相关系数为0.998,SAT为0.996)和手动重新编辑(VAT的组内相关系数为0.999,SAT为0.999)方面都具有出色的一致性。

结论

FatSegNet能很好地推广到不同体型,在一项大型队列研究中灵敏地复制了已知的VAT和SAT体积效应,并允许对脂肪隔室进行局部分析。此外,它能在约1分钟内可靠地分析三维迪克森MRI,为莱茵兰研究中的腹部脂肪组织分析提供了一种高效且经过验证的管道。

相似文献

1
FatSegNet: A fully automated deep learning pipeline for adipose tissue segmentation on abdominal dixon MRI.
Magn Reson Med. 2020 Apr;83(4):1471-1483. doi: 10.1002/mrm.28022. Epub 2019 Oct 21.
2
4
CAFT: a deep learning-based comprehensive abdominal fat analysis tool for large cohort studies.
MAGMA. 2022 Apr;35(2):205-220. doi: 10.1007/s10334-021-00946-9. Epub 2021 Aug 2.
6
3D Neural Networks for Visceral and Subcutaneous Adipose Tissue Segmentation using Volumetric Multi-Contrast MRI.
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:3933-3937. doi: 10.1109/EMBC46164.2021.9630110.
7
Automated olfactory bulb segmentation on high resolutional T2-weighted MRI.
Neuroimage. 2021 Nov 15;242:118464. doi: 10.1016/j.neuroimage.2021.118464. Epub 2021 Aug 10.
8
Fully convolutional networks for automated segmentation of abdominal adipose tissue depots in multicenter water-fat MRI.
Magn Reson Med. 2019 Apr;81(4):2736-2745. doi: 10.1002/mrm.27550. Epub 2018 Oct 12.
9
Deep learning for abdominal adipose tissue segmentation with few labelled samples.
Int J Comput Assist Radiol Surg. 2022 Mar;17(3):579-587. doi: 10.1007/s11548-021-02533-8. Epub 2021 Nov 29.
10
Automatic segmentation of abdominal organs and adipose tissue compartments in water-fat MRI: Application to weight-loss in obesity.
Eur J Radiol. 2016 Sep;85(9):1613-21. doi: 10.1016/j.ejrad.2016.06.006. Epub 2016 Jun 8.

引用本文的文献

3
Reproducibility of automatic adipose tissue segmentation using proton density fat fraction images between 1.5 and 3.0 T magnetic resonance.
Quant Imaging Med Surg. 2025 Jan 2;15(1):537-552. doi: 10.21037/qims-24-1306. Epub 2024 Dec 24.
4
Versatile MRI acquisition and processing protocol for population-based neuroimaging.
Nat Protoc. 2025 May;20(5):1223-1245. doi: 10.1038/s41596-024-01085-w. Epub 2024 Dec 13.
5
FastSurfer-HypVINN: Automated sub-segmentation of the hypothalamus and adjacent structures on high-resolutional brain MRI.
Imaging Neurosci (Camb). 2023 Nov 21;1:1-32. doi: 10.1162/imag_a_00034. eCollection 2023 Nov 1.
6
Quantification of Visceral Fat at the L5 Vertebral Body Level in Patients with Crohn's Disease Using T2-Weighted MRI.
Bioengineering (Basel). 2024 May 22;11(6):528. doi: 10.3390/bioengineering11060528.
8
Reproducible Research Practices in Magnetic Resonance Neuroimaging: A Review Informed by Advanced Language Models.
Magn Reson Med Sci. 2024 Jul 1;23(3):252-267. doi: 10.2463/mrms.rev.2023-0174. Epub 2024 Jun 19.

本文引用的文献

1
QuickNAT: A fully convolutional network for quick and accurate segmentation of neuroanatomy.
Neuroimage. 2019 Feb 1;186:713-727. doi: 10.1016/j.neuroimage.2018.11.042. Epub 2018 Nov 29.
2
Fully convolutional networks for automated segmentation of abdominal adipose tissue depots in multicenter water-fat MRI.
Magn Reson Med. 2019 Apr;81(4):2736-2745. doi: 10.1002/mrm.27550. Epub 2018 Oct 12.
3
Body Composition Profiling in the UK Biobank Imaging Study.
Obesity (Silver Spring). 2018 Nov;26(11):1785-1795. doi: 10.1002/oby.22210. Epub 2018 May 22.
4
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation.
IEEE Trans Pattern Anal Mach Intell. 2017 Dec;39(12):2481-2495. doi: 10.1109/TPAMI.2016.2644615. Epub 2017 Jan 2.
5
Fully Convolutional Networks for Semantic Segmentation.
IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651. doi: 10.1109/TPAMI.2016.2572683. Epub 2016 May 24.
6
Automated quantification of abdominal adiposity by magnetic resonance imaging.
Am J Hum Biol. 2016 Nov;28(6):757-766. doi: 10.1002/ajhb.22862. Epub 2016 Apr 28.
7
Relationship Among Body Fat Percentage, Body Mass Index, and All-Cause Mortality: A Cohort Study.
Ann Intern Med. 2016 Apr 19;164(8):532-41. doi: 10.7326/M15-1181. Epub 2016 Mar 8.
8
Misclassification of cardiometabolic health when using body mass index categories in NHANES 2005-2012.
Int J Obes (Lond). 2016 May;40(5):883-6. doi: 10.1038/ijo.2016.17. Epub 2016 Feb 4.
10
Automated segmentation of visceral and subcutaneous (deep and superficial) adipose tissues in normal and overweight men.
J Magn Reson Imaging. 2015 Apr;41(4):924-34. doi: 10.1002/jmri.24655. Epub 2014 May 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验