Suppr超能文献

基于自动化深度学习的青少年 Dixon MRI 腹部脂肪组织分割:一项前瞻性基于人群的研究。

Automated Deep Learning-Based Segmentation of Abdominal Adipose Tissue on Dixon MRI in Adolescents: A Prospective Population-Based Study.

机构信息

The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.

Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.

出版信息

AJR Am J Roentgenol. 2024 Jan;222(1):e2329570. doi: 10.2214/AJR.23.29570. Epub 2023 Aug 16.

Abstract

The prevalence of childhood obesity has increased significantly worldwide, highlighting a need for accurate noninvasive quantification of body fat distribution in children. The purpose of this study was to develop and test an automated deep learning method for subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) segmentation using Dixon MRI acquisitions in adolescents. This study was embedded within the Generation R Study, a prospective population-based cohort study in Rotterdam, The Netherlands. The current study included 2989 children (1432 boys, 1557 girls; mean age, 13.5 years) who underwent investigational whole-body Dixon MRI after reaching the age of 13 years during the follow-up phase of the Generation R Study. A 2D competitive dense fully convolutional neural network model (2D-CDFNet) was trained from scratch to segment abdominal SAT and VAT using Dixon MRI-based images. The model underwent training, validation, and testing in 62, eight, and 15 children, respectively, who were selected by stratified random sampling, with manual segmentations used as reference. Segmentation performance was assessed using the Dice similarity coefficient and volumetric similarity. Two observers independently performed subjective visual assessments of automated segmentations in 504 children, selected by stratified random sampling, with undersegmentation and oversegmentation scored on a scale of 0-3 (with a score of 3 denoting nearly perfect segmentation). For 2820 children for whom complete data were available, Spearman correlation coefficients were computed among MRI measurements and BMI and dual-energy x-ray absorptiometry (DEXA)-based measurements. The model used (gitlab.com/radiology/msk/genr/abdomen/cdfnet) is publicly available. In the test dataset, the mean Dice similarity coefficient and mean volu-metric similarity, respectively, were 0.94 ± 0.03 [SD] and 0.98 ± 0.01 [SD] for SAT and 0.85 ± 0.05 and 0.92 ± 0.04 for VAT. The two observers assigned a score of 3 for SAT in 94% and 93% for the undersegmentation proportion and in 99% and 99% for the oversegmentation proportion, and they assigned a score of 3 for VAT in 99% and 99% for the undersegmentation proportion and in 95% and 97% for the oversegmentation proportion. Correlations with SAT and VAT were 0.808 and 0.698 for BMI and 0.941 and 0.801 for DEXA-derived fat mass. We trained and evaluated the 2D-CDFNet model on Dixon MRI in adolescents. Quantitative and qualitative measures of automated SAT and VAT segmentations indicated strong model performance. The automated model may facilitate large-scale studies investigating abdominal fat distribution on MRI among adolescents as well as associations of fat distribution with clinical outcomes.

摘要

儿童肥胖症的患病率在全球范围内显著增加,这凸显了准确无创地量化儿童体脂分布的需求。本研究旨在开发和测试一种使用青少年 Dixon MRI 采集的自动深度学习方法,用于皮下脂肪组织 (SAT) 和内脏脂肪组织 (VAT) 的分割。本研究嵌入在 Generation R 研究中,这是荷兰鹿特丹的一项前瞻性基于人群的队列研究。目前的研究包括 2989 名儿童(1432 名男孩,1557 名女孩;平均年龄 13.5 岁),他们在 Generation R 研究的随访阶段达到 13 岁后接受了全身 Dixon MRI 检查。使用基于 Dixon MRI 的图像,使用 2D 竞争密集全卷积神经网络模型(2D-CDFNet)从头开始训练以分割腹部 SAT 和 VAT。该模型分别在 62、8 和 15 名儿童中进行了训练、验证和测试,这些儿童是通过分层随机抽样选择的,使用手动分割作为参考。使用 Dice 相似系数和体积相似性评估分割性能。两名观察者分别对通过分层随机抽样选择的 504 名儿童的自动分割进行了主观视觉评估,将欠分割和过分割分别评为 0-3 分(3 分表示几乎完美的分割)。对于 2820 名具有完整数据的儿童,计算了 MRI 测量值与 BMI 和双能 X 射线吸收法 (DEXA) 测量值之间的 Spearman 相关系数。使用的模型(gitlab.com/radiology/msk/genr/abdomen/cdfnet)是公开的。在测试数据集上,SAT 的平均 Dice 相似系数和平均体积相似性分别为 0.94 ± 0.03 [SD] 和 0.98 ± 0.01 [SD],VAT 分别为 0.85 ± 0.05 和 0.92 ± 0.04。两名观察者分别将 SAT 的分割比例评为 3 分,分别为 94%和 93%,而过分割比例分别为 99%和 99%,VAT 的分割比例分别为 99%和 99%,而过分割比例分别为 95%和 97%。与 SAT 和 VAT 的相关性分别为 BMI 的 0.808 和 0.698,DEXA 衍生脂肪量的 0.941 和 0.801。我们在青少年 Dixon MRI 上训练和评估了 2D-CDFNet 模型。自动 SAT 和 VAT 分割的定量和定性测量表明模型性能很强。该自动化模型可能有助于在青少年中进行大规模的 MRI 腹部脂肪分布研究,以及脂肪分布与临床结果的关联。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验