Suppr超能文献

水脂磁共振成像中腹部器官和脂肪组织区域的自动分割:在肥胖症减肥中的应用

Automatic segmentation of abdominal organs and adipose tissue compartments in water-fat MRI: Application to weight-loss in obesity.

作者信息

Shen Jun, Baum Thomas, Cordes Christian, Ott Beate, Skurk Thomas, Kooijman Hendrik, Rummeny Ernst J, Hauner Hans, Menze Bjoern H, Karampinos Dimitrios C

机构信息

Department of Computer Science, Technische Universität München, Munich, Germany; Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.

Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.

出版信息

Eur J Radiol. 2016 Sep;85(9):1613-21. doi: 10.1016/j.ejrad.2016.06.006. Epub 2016 Jun 8.

Abstract

PURPOSE

To develop a fully automatic algorithm for abdominal organs and adipose tissue compartments segmentation and to assess organ and adipose tissue volume changes in longitudinal water-fat magnetic resonance imaging (MRI) data.

MATERIALS AND METHODS

Axial two-point Dixon images were acquired in 20 obese women (age range 24-65, BMI 34.9±3.8kg/m(2)) before and after a four-week calorie restriction. Abdominal organs, subcutaneous adipose tissue (SAT) compartments (abdominal, anterior, posterior), SAT regions along the feet-head direction and regional visceral adipose tissue (VAT) were assessed by a fully automatic algorithm using morphological operations and a multi-atlas-based segmentation method.

RESULTS

The accuracy of organ segmentation represented by Dice coefficients ranged from 0.672±0.155 for the pancreas to 0.943±0.023 for the liver. Abdominal SAT changes were significantly greater in the posterior than the anterior SAT compartment (-11.4%±5.1% versus -9.5%±6.3%, p<0.001). The loss of VAT that was not located around any organ (-16.1%±8.9%) was significantly greater than the loss of VAT 5cm around liver, left and right kidney, spleen, and pancreas (p<0.05).

CONCLUSION

The presented fully automatic algorithm showed good performance in abdominal adipose tissue and organ segmentation, and allowed the detection of SAT and VAT subcompartments changes during weight loss.

摘要

目的

开发一种用于腹部器官和脂肪组织分区分割的全自动算法,并评估纵向水脂磁共振成像(MRI)数据中器官和脂肪组织体积的变化。

材料与方法

对20名肥胖女性(年龄范围24 - 65岁,BMI 34.9±3.8kg/m²)在进行为期四周的热量限制前后采集轴向两点 Dixon 图像。使用形态学操作和基于多图谱的分割方法,通过全自动算法评估腹部器官、皮下脂肪组织(SAT)分区(腹部、前部、后部)、沿足 - 头方向的SAT区域以及区域内脏脂肪组织(VAT)。

结果

以 Dice 系数表示的器官分割准确率范围为胰腺的0.672±0.155至肝脏的0.943±0.023。腹部SAT的变化在后部显著大于前部SAT分区(-11.4%±5.1%对 -9.5%±6.3%,p<0.001)。未位于任何器官周围的VAT损失(-16.1%±8.9%)显著大于肝脏、左右肾、脾和胰腺周围5cm处的VAT损失(p<0.05)。

结论

所提出的全自动算法在腹部脂肪组织和器官分割中表现良好,并能够检测减肥过程中SAT和VAT子分区的变化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验