Suppr超能文献

使用神经网络在超声引导下的腋神经阻滞手术中突出显示神经和血管。

Highlighting nerves and blood vessels for ultrasound-guided axillary nerve block procedures using neural networks.

作者信息

Smistad Erik, Johansen Kaj Fredrik, Iversen Daniel Høyer, Reinertsen Ingerid

机构信息

SINTEF Medical Technology, Trondheim, Norway.

Norwegian University of Science and Technology, Department of Circulation and Medical Imaging, Trondheim, Norway.

出版信息

J Med Imaging (Bellingham). 2018 Oct;5(4):044004. doi: 10.1117/1.JMI.5.4.044004. Epub 2018 Nov 10.

Abstract

Ultrasound images acquired during axillary nerve block procedures can be difficult to interpret. Highlighting the important structures, such as nerves and blood vessels, may be useful for the training of inexperienced users. A deep convolutional neural network is used to identify the musculocutaneous, median, ulnar, and radial nerves, as well as the blood vessels in ultrasound images. A dataset of 49 subjects is collected and used for training and evaluation of the neural network. Several image augmentations, such as rotation, elastic deformation, shadows, and horizontal flipping, are tested. The neural network is evaluated using cross validation. The results showed that the blood vessels were the easiest to detect with a precision and recall above 0.8. Among the nerves, the median and ulnar nerves were the easiest to detect with an -score of 0.73 and 0.62, respectively. The radial nerve was the hardest to detect with an -score of 0.39. Image augmentations proved effective, increasing -score by as much as 0.13. A Wilcoxon signed-rank test showed that the improvement from rotation, shadow, and elastic deformation augmentations were significant and the combination of all augmentations gave the best result. The results are promising; however, there is more work to be done, as the precision and recall are still too low. A larger dataset is most likely needed to improve accuracy, in combination with anatomical and temporal models.

摘要

在腋神经阻滞手术过程中获取的超声图像可能难以解读。突出显示神经和血管等重要结构可能有助于对缺乏经验的使用者进行培训。使用深度卷积神经网络来识别超声图像中的肌皮神经、正中神经、尺神经、桡神经以及血管。收集了49名受试者的数据集并用于神经网络的训练和评估。测试了几种图像增强方法,如旋转、弹性变形、阴影和水平翻转。使用交叉验证对神经网络进行评估。结果表明,血管最容易检测,精确率和召回率均高于0.8。在神经中,正中神经和尺神经最容易检测,F1分数分别为0.73和0.62。桡神经最难检测,F1分数为0.39。图像增强方法被证明是有效的,F1分数提高了多达0.13。威尔科克森符号秩检验表明,旋转、阴影和弹性变形增强方法带来的改善是显著的,所有增强方法的组合给出了最佳结果。结果很有前景;然而,仍有更多工作要做,因为精确率和召回率仍然太低。结合解剖学和时间模型,很可能需要更大的数据集来提高准确性。

相似文献

1
Highlighting nerves and blood vessels for ultrasound-guided axillary nerve block procedures using neural networks.
J Med Imaging (Bellingham). 2018 Oct;5(4):044004. doi: 10.1117/1.JMI.5.4.044004. Epub 2018 Nov 10.
2
Is the musculocutaneous nerve really in the coracobrachialis muscle when performing an axillary block? An ultrasound study.
Anesth Analg. 2010 Jun 1;110(6):1729-34. doi: 10.1213/ANE.0b013e3181dc25c8. Epub 2010 Apr 30.
4
Influence of arm position on ultrasound visibility of the axillary brachial plexus.
Eur J Anaesthesiol. 2015 Nov;32(11):771-80. doi: 10.1097/EJA.0000000000000293.
8
A Generalized Approach for Automatic 3-D Geometry Assessment of Blood Vessels in Transverse Ultrasound Images Using Convolutional Neural Networks.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Nov;68(11):3326-3335. doi: 10.1109/TUFFC.2021.3090461. Epub 2021 Oct 25.
9
Evaluation of the relationship between the topographical anatomy in the axillary region of the brachial plexus and the body mass index.
J Clin Monit Comput. 2018 Aug;32(4):779-784. doi: 10.1007/s10877-017-0062-7. Epub 2017 Sep 4.
10
A comparison of stimulation patterns in axillary block: part 2.
Reg Anesth Pain Med. 2006 May-Jun;31(3):202-5. doi: 10.1016/j.rapm.2006.01.002.

引用本文的文献

1
Enhancing Lesion Segmentation in Ultrasound Images: The Impact of Targeted Data Augmentation Strategies.
Int J Biomed Imaging. 2025 Aug 11;2025:3309822. doi: 10.1155/ijbi/3309822. eCollection 2025.
2
Innovative technologies in regional anaesthesia education: a scoping review.
BJA Open. 2025 Aug 6;15:100473. doi: 10.1016/j.bjao.2025.100473. eCollection 2025 Sep.
3
Automated facial nerve identification in microsurgery with an improved unet.
J Robot Surg. 2025 Jul 6;19(1):354. doi: 10.1007/s11701-025-02501-3.
5
Prospective randomized evaluation of the sustained impact of assistive artificial intelligence on anesthetists' ultrasound scanning for regional anesthesia.
BMJ Surg Interv Health Technol. 2024 Oct 16;6(1):e000264. doi: 10.1136/bmjsit-2024-000264. eCollection 2024.
6
Practical Use of Ultrasound in Modern Rheumatology-From A to Z.
Life (Basel). 2024 Sep 23;14(9):1208. doi: 10.3390/life14091208.
7
Automated segmentation of the median nerve in patients with carpal tunnel syndrome.
Sci Rep. 2024 Jul 20;14(1):16757. doi: 10.1038/s41598-024-65840-5.
9
Artificial intelligence for ultrasound scanning in regional anaesthesia: a scoping review of the evidence from multiple disciplines.
Br J Anaesth. 2024 May;132(5):1049-1062. doi: 10.1016/j.bja.2024.01.036. Epub 2024 Mar 5.
10
Applications of artificial intelligence in musculoskeletal ultrasound: narrative review.
Front Med (Lausanne). 2023 Nov 21;10:1286085. doi: 10.3389/fmed.2023.1286085. eCollection 2023.

本文引用的文献

1
Automatic Segmentation and Probe Guidance for Real-Time Assistance of Ultrasound-Guided Femoral Nerve Blocks.
Ultrasound Med Biol. 2017 Jan;43(1):218-226. doi: 10.1016/j.ultrasmedbio.2016.08.036. Epub 2016 Oct 7.
2
Real-Time Automatic Artery Segmentation, Reconstruction and Registration for Ultrasound-Guided Regional Anaesthesia of the Femoral Nerve.
IEEE Trans Med Imaging. 2016 Mar;35(3):752-61. doi: 10.1109/TMI.2015.2494160. Epub 2015 Oct 26.
3
Phase-based probabilistic active contour for nerve detection in ultrasound images for regional anesthesia.
Comput Biol Med. 2014 Sep;52:88-95. doi: 10.1016/j.compbiomed.2014.06.001. Epub 2014 Jun 16.
4
Ultrasound-guided nerve blocks--is documentation and education feasible using only text and pictures?
PLoS One. 2014 Feb 12;9(2):e86966. doi: 10.1371/journal.pone.0086966. eCollection 2014.
5
Value of an electronic tutorial for image interpretation in ultrasound-guided regional anesthesia.
Reg Anesth Pain Med. 2013 Jan-Feb;38(1):44-9. doi: 10.1097/AAP.0b013e31827910fb.
6
Real-time vessel segmentation and tracking for ultrasound imaging applications.
IEEE Trans Med Imaging. 2007 Aug;26(8):1079-90. doi: 10.1109/TMI.2007.899180.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验