Hofmeester Tim R, Cromsigt Joris P G M, Odden John, Andrén Henrik, Kindberg Jonas, Linnell John D C
Department of Wildlife, Fish, and Environmental Studies Swedish University of Agricultural Sciences Umeå Sweden.
Centre for African Conservation Ecology, Department of Zoology Nelson Mandela University Port Elizabeth South Africa.
Ecol Evol. 2019 Jan 23;9(4):2320-2336. doi: 10.1002/ece3.4878. eCollection 2019 Feb.
Obtaining reliable species observations is of great importance in animal ecology and wildlife conservation. An increasing number of studies use camera traps (CTs) to study wildlife communities, and an increasing effort is made to make better use and reuse of the large amounts of data that are produced. It is in these circumstances that it becomes paramount to correct for the species- and study-specific variation in imperfect detection within CTs. We reviewed the literature and used our own experience to compile a list of factors that affect CT detection of animals. We did this within a conceptual framework of six distinct scales separating out the influences of (a) animal characteristics, (b) CT specifications, (c) CT set-up protocols, and (d) environmental variables. We identified 40 factors that can potentially influence the detection of animals by CTs at these six scales. Many of these factors were related to only a few overarching parameters. Most of the animal characteristics scale with body mass and diet type, and most environmental characteristics differ with season or latitude such that remote sensing products like NDVI could be used as a proxy index to capture this variation. Factors that influence detection at the microsite and camera scales are probably the most important in determining CT detection of animals. The type of study and specific research question will determine which factors should be corrected. Corrections can be done by directly adjusting the CT metric of interest or by using covariates in a statistical framework. Our conceptual framework can be used to design better CT studies and help when analyzing CT data. Furthermore, it provides an overview of which factors should be reported in CT studies to make them repeatable, comparable, and their data reusable. This should greatly improve the possibilities for global scale analyses of (reused) CT data.
在动物生态学和野生动物保护中,获取可靠的物种观测数据至关重要。越来越多的研究使用相机陷阱(CTs)来研究野生动物群落,并且人们越来越努力地更好地利用和再利用所产生的大量数据。正是在这种情况下,校正相机陷阱中不完美检测的物种和研究特定变异变得至关重要。我们回顾了文献并利用自身经验编制了一份影响相机陷阱对动物检测的因素清单。我们是在一个由六个不同尺度组成的概念框架内进行的,该框架区分了(a)动物特征、(b)相机陷阱规格、(c)相机陷阱设置协议以及(d)环境变量的影响。我们确定了在这六个尺度上可能影响相机陷阱对动物检测的40个因素。这些因素中的许多仅与少数几个总体参数相关。大多数动物特征随体重和饮食类型而变化,并且大多数环境特征随季节或纬度而不同,以至于像归一化植被指数(NDVI)这样的遥感产品可以用作捕捉这种变化的代理指标。在确定相机陷阱对动物的检测方面,影响微观地点和相机尺度检测的因素可能最为重要。研究类型和具体研究问题将决定应校正哪些因素。校正可以通过直接调整感兴趣的相机陷阱指标或在统计框架中使用协变量来完成。我们的概念框架可用于设计更好的相机陷阱研究,并在分析相机陷阱数据时提供帮助。此外,它概述了在相机陷阱研究中应报告哪些因素,以使研究具有可重复性、可比性且其数据可再利用。这应大大提高对(再利用的)相机陷阱数据进行全球尺度分析的可能性。