Department of Biotechnology and Biosciences, University Milano-Bicocca, 20126 Milano, Italy.
The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
Cell Stem Cell. 2019 Mar 7;24(3):462-476.e6. doi: 10.1016/j.stem.2019.02.004.
The SOX2 transcription factor is critical for neural stem cell (NSC) maintenance and brain development. Through chromatin immunoprecipitation (ChIP) and chromatin interaction analysis (ChIA-PET), we determined genome-wide SOX2-bound regions and Pol II-mediated long-range chromatin interactions in brain-derived NSCs. SOX2-bound DNA was highly enriched in distal chromatin regions interacting with promoters and carrying epigenetic enhancer marks. Sox2 deletion caused widespread reduction of Pol II-mediated long-range interactions and decreased gene expression. Genes showing reduced expression in Sox2-deleted cells were significantly enriched in interactions between promoters and SOX2-bound distal enhancers. Expression of one such gene, Suppressor of Cytokine Signaling 3 (Socs3), rescued the self-renewal defect of Sox2-ablated NSCs. Our work identifies SOX2 as a major regulator of gene expression through connections to the enhancer network in NSCs. Through the definition of such a connectivity network, our study shows the way to the identification of genes and enhancers involved in NSC maintenance and neurodevelopmental disorders.
SOX2 转录因子对于神经干细胞(NSC)的维持和大脑发育至关重要。通过染色质免疫沉淀(ChIP)和染色质相互作用分析(ChIA-PET),我们确定了大脑来源的 NSCs 中 SOX2 结合的全基因组区域和 Pol II 介导的长程染色质相互作用。SOX2 结合的 DNA 在与启动子相互作用并带有表观遗传增强子标记的远端染色质区域中高度富集。Sox2 缺失导致 Pol II 介导的长程相互作用广泛减少,基因表达降低。在 Sox2 缺失细胞中表达降低的基因在启动子和 SOX2 结合的远端增强子之间的相互作用中显著富集。一种这样的基因,细胞因子信号转导抑制因子 3(Socs3)的表达,挽救了 Sox2 缺失的 NSCs 的自我更新缺陷。我们的工作通过与 NSCs 中的增强子网络连接,确定了 SOX2 作为主要的基因表达调控因子。通过定义这样的连接网络,我们的研究为鉴定参与 NSC 维持和神经发育障碍的基因和增强子提供了途径。