State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210018, China; Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Biosciences Division, Berkeley, CA 94720, USA; Synthetic Biology Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
Curr Opin Biotechnol. 2019 Jun;57:66-72. doi: 10.1016/j.copbio.2019.01.018. Epub 2019 Mar 5.
The growing abundance of wind and solar power has driven interest in utilizing this renewable energy to make chemicals. One of the most efficient and sophisticated frameworks to solar-to-chemical conversion is bioelectrochemical systems that electrochemically couple inorganic catalysts and microorganisms. In particular, microbial electrosynthesis systems and biohybrid systems have used CO and electricity or light, respectively, to synthesize organic acids at energy efficiencies that exceed natural photosynthesis. In parallel, new methods have been recently developed to improve the poor mechanistic understanding of these and other bioelectrochemical systems. Deeper knowledge of these underlying molecular processes and creation of new architectures for bioelectrochemical systems are needed to make these promising technologies scale to a commercially relevant level.
风能和太阳能的日益丰富,推动了人们利用这种可再生能源来制造化学品的兴趣。将太阳能转化为化学能的最有效和最复杂的框架之一是生物电化学系统,它电化学地结合了无机催化剂和微生物。特别是,微生物电化学合成系统和生物混合系统分别使用 CO 和电力或光,以超过自然光合作用的能量效率来合成有机酸。与此同时,最近还开发了新的方法来提高对这些和其他生物电化学系统的机械理解。为了使这些有前途的技术达到商业相关的水平,需要更深入地了解这些基础分子过程,并为生物电化学系统创造新的架构。