School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
Sci Rep. 2019 Mar 8;9(1):3996. doi: 10.1038/s41598-019-40631-5.
Isobutanol production in Saccharomyces cerevisiae is limited by subcellular compartmentalization of the pathway enzymes. In this study, we improved isobutanol production in S. cerevisiae by constructing an artificial cytosolic isobutanol biosynthetic pathway consisting of AlsS, α-acetolactate synthase from Bacillus subtilis, and two endogenous mitochondrial enzymes, ketol-acid reductoisomerase (Ilv5) and dihydroxy-acid dehydratase (Ilv3), targeted to the cytosol. B. subtilis AlsS was more active than Ilv2ΔN54, an endogenous α-acetolactate synthase targeted to the cytosol. However, overexpression of alsS led to a growth inhibition, which was alleviated by overexpressing ILV5ΔN48 and ILV3ΔN19, encoding the downstream enzymes targeted to the cytosol. Therefore, accumulation of the intermediate α-acetolactate might be toxic to the cells. Based on these findings, we improved isobutanol production by expressing alsS under the control of a copper-inducible CUP1 promoter, and by increasing translational efficiency of the ILV5ΔN48 and ILV3ΔN19 genes by adding Kozak sequence. Furthermore, strains with multi-copy integration of alsS into the delta-sequences were screened based on growth inhibition upon copper-dependent induction of alsS. Next, the ILV5ΔN48 and ILV3ΔN19 genes were integrated into the rDNA sites of the alsS-integrated strain, and the strains with multi-copy integration were screened based on the growth recovery. After optimizing the induction conditions of alsS, the final engineered strain JHY43D24 produced 263.2 mg/L isobutanol, exhibiting about 3.3-fold increase in production compared to a control strain constitutively expressing ILV2ΔN54, ILV5ΔN48, and ILV3ΔN19 on plasmids.
在酿酒酵母中,异丁醇的生产受到途径酶的亚细胞区室化的限制。在这项研究中,我们通过构建一个由来自枯草芽孢杆菌的 AlsS、α-乙酰乳酸合酶和两个内源性线粒体酶,即酮酸还原异构酶(Ilv5)和二羟酸脱水酶(Ilv3)组成的细胞质中异丁醇生物合成途径,来提高酿酒酵母中的异丁醇生产。枯草芽孢杆菌 AlsS 比靶向细胞质的内源性 α-乙酰乳酸合酶 Ilv2ΔN54 更具活性。然而,alsS 的过表达导致细胞生长抑制,这可以通过过表达靶向细胞质的下游酶 Ilv5ΔN48 和 Ilv3ΔN19 来缓解。因此,中间产物α-乙酰乳酸的积累可能对细胞有毒。基于这些发现,我们通过在铜诱导型 CUP1 启动子的控制下表达 alsS,并通过添加 Kozak 序列来提高 Ilv5ΔN48 和 Ilv3ΔN19 基因的翻译效率,从而提高异丁醇的产量。此外,根据铜依赖性诱导 alsS 时的生长抑制情况,筛选出了 alsS 多拷贝整合到 δ-序列的菌株。然后,将 ILV5ΔN48 和 ILV3ΔN19 基因整合到 alsS 整合菌株的 rDNA 位点,并根据生长恢复情况筛选出多拷贝整合的菌株。在优化 alsS 的诱导条件后,最终工程菌株 JHY43D24 生产了 263.2mg/L 的异丁醇,与在质粒上组成型表达 ILV2ΔN54、ILV5ΔN48 和 ILV3ΔN19 的对照菌株相比,产量提高了约 3.3 倍。