Suppr超能文献

通过连续阻断竞争性代谢途径以及乙醇和甘油的形成来提高酵母生产异丁醇的能力。

Improving isobutanol production with the yeast by successively blocking competing metabolic pathways as well as ethanol and glycerol formation.

作者信息

Wess Johannes, Brinek Martin, Boles Eckhard

机构信息

Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany.

出版信息

Biotechnol Biofuels. 2019 Jul 2;12:173. doi: 10.1186/s13068-019-1486-8. eCollection 2019.

Abstract

BACKGROUND

Isobutanol is a promising candidate as second-generation biofuel and has several advantages compared to bioethanol. Another benefit of isobutanol is that it is already formed as a by-product in fermentations with the yeast , although only in very small amounts. Isobutanol formation results from valine degradation in the cytosol via the Ehrlich pathway. In contrast, valine is synthesized from pyruvate in mitochondria. This spatial separation into two different cell compartments is one of the limiting factors for higher isobutanol production in yeast. Furthermore, some intermediate metabolites are also substrates for various isobutanol competing pathways, reducing the metabolic flux toward isobutanol production. We hypothesized that a relocation of all enzymes involved in anabolic and catabolic reactions of valine metabolism in only one cell compartment, the cytosol, in combination with blocking non-essential isobutanol competing pathways will increase isobutanol production in yeast.

RESULTS

Here, we overexpressed the three endogenous enzymes acetolactate synthase (Ilv2), acetohydroxyacid reductoisomerase (Ilv5) and dihydroxy-acid dehydratase (Ilv3) of the valine synthesis pathway in the cytosol and blocked the first step of mitochondrial valine synthesis by disrupting endogenous , leading to a 22-fold increase of isobutanol production up to 0.22 g/L (5.28 mg/g glucose) with aerobic shake flask cultures. Then, we successively deleted essential genes of competing pathways for synthesis of 2,3-butanediol ( and ), leucine ( and ), pantothenate () and isoleucine () resulting in an optimized metabolic flux toward isobutanol and titers of up to 0.56 g/L (13.54 mg/g glucose). Reducing ethanol formation by deletion of the gene encoding the major alcohol dehydrogenase did not result in further increased isobutanol production, but in strongly enhanced glycerol formation. Nevertheless, deletion of glycerol-3-phosphate dehydrogenase genes and prevented formation of glycerol and increased isobutanol production up to 1.32 g/L. Finally, additional deletion of aldehyde dehydrogenase gene reduced the synthesis of the by-product isobutyrate, thereby further increasing isobutanol production up to 2.09 g/L with a yield of 59.55 mg/g glucose, corresponding to a more than 200-fold increase compared to the wild type.

CONCLUSIONS

By overexpressing a cytosolic isobutanol synthesis pathway and by blocking non-essential isobutanol competing pathways, we could achieve isobutanol production with a yield of 59.55 mg/g glucose, which is the highest yield ever obtained with in shake flask cultures. Nevertheless, our results indicate a still limiting capacity of the isobutanol synthesis pathway itself.

摘要

背景

异丁醇作为第二代生物燃料颇具潜力,与生物乙醇相比具有若干优势。异丁醇的另一个益处是,它已在酵母发酵过程中作为副产物形成,尽管产量极少。异丁醇的形成源于细胞质中缬氨酸通过埃利希途径的降解。相比之下,缬氨酸在线粒体中由丙酮酸合成。这种在两个不同细胞区室中的空间分隔是酵母中异丁醇产量提高的限制因素之一。此外,一些中间代谢产物也是各种与异丁醇竞争途径的底物,减少了通往异丁醇生产的代谢通量。我们推测,将缬氨酸代谢的合成和分解代谢反应中涉及的所有酶重新定位到仅一个细胞区室——细胞质中,再结合阻断非必需的异丁醇竞争途径,将增加酵母中异丁醇的产量。

结果

在此,我们在细胞质中过表达了缬氨酸合成途径的三种内源性酶——乙酰乳酸合酶(Ilv2)、乙酰羟酸还原异构酶(Ilv5)和二羟酸脱水酶(Ilv3),并通过破坏内源性基因阻断了线粒体缬氨酸合成的第一步,在有氧摇瓶培养中使异丁醇产量提高了22倍,达到0.22 g/L(5.28 mg/g葡萄糖)。然后,我们相继删除了2,3 - 丁二醇( 和 )、亮氨酸( 和 )、泛酸( )和异亮氨酸( )合成竞争途径的必需基因,从而使通往异丁醇的代谢通量得到优化,产量高达0.56 g/L(13.54 mg/g葡萄糖)。通过删除编码主要乙醇脱氢酶的 基因来减少乙醇生成,并未使异丁醇产量进一步增加,反而导致甘油生成大幅增加。然而,删除甘油 - 3 - 磷酸脱氢酶基因 和 可阻止甘油生成,并使异丁醇产量提高至1.32 g/L。最后,额外删除醛脱氢酶基因 可减少副产物异丁酸的合成,从而使异丁醇产量进一步提高至2.09 g/L,产率为59.55 mg/g葡萄糖,与野生型相比增加了200多倍。

结论

通过过表达细胞质异丁醇合成途径并阻断非必需的异丁醇竞争途径,我们实现了59.55 mg/g葡萄糖的异丁醇产量,这是在摇瓶培养中使用 获得的最高产率。然而,我们的结果表明异丁醇合成途径本身仍存在限制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d50e/6604370/0b8bd102e0f6/13068_2019_1486_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验