Yang Jiaqi, Mehta Nitish, Demirci Gozde, Hu Xiaoling, Ramakrishnan Meera S, Naguib Mina, Chen Chao, Tsai Chia-Ling
Graduate Center CUNY, 365 5th Ave, NY 10016, USA.
New York University Department of Ophthalmology, NYU Langone Health, 222 E. 41st St., 3rd Floor, NY 10017, USA.
Med Image Anal. 2024 May;94:103139. doi: 10.1016/j.media.2024.103139. Epub 2024 Mar 12.
The availability of big data can transform the studies in biomedical research to generate greater scientific insights if expert labeling is available to facilitate supervised learning. However, data annotation can be labor-intensive and cost-prohibitive if pixel-level precision is required. Weakly supervised semantic segmentation (WSSS) with image-level labeling has emerged as a promising solution in medical imaging. However, most existing WSSS methods in the medical domain are designed for single-class segmentation per image, overlooking the complexities arising from the co-existence of multiple classes in a single image. Additionally, the multi-class WSSS methods from the natural image domain cannot produce comparable accuracy for medical images, given the challenge of substantial variation in lesion scales and occurrences. To address this issue, we propose a novel anomaly-guided mechanism (AGM) for multi-class segmentation in a single image on retinal optical coherence tomography (OCT) using only image-level labels. AGM leverages the anomaly detection and self-attention approach to integrate weak abnormal signals with global contextual information into the training process. Furthermore, we include an iterative refinement stage to guide the model to focus more on the potential lesions while suppressing less relevant regions. We validate the performance of our model with two public datasets and one challenging private dataset. Experimental results show that our approach achieves a new state-of-the-art performance in WSSS for lesion segmentation on OCT images.
如果有专家标注来促进监督学习,大数据的可用性可以改变生物医学研究中的各项研究,以产生更深刻的科学见解。然而,如果需要像素级精度,数据标注可能会耗费大量人力且成本过高。具有图像级标注的弱监督语义分割(WSSS)已成为医学成像领域一种很有前景的解决方案。然而,医学领域中现有的大多数WSSS方法都是针对单幅图像的单类分割设计的,忽略了单幅图像中多类共存所带来的复杂性。此外,鉴于病变尺度和出现情况存在显著差异的挑战,来自自然图像领域的多类WSSS方法在医学图像上无法产生可比的精度。为了解决这个问题,我们提出了一种新颖的异常引导机制(AGM),用于仅使用图像级标签在视网膜光学相干断层扫描(OCT)的单幅图像中进行多类分割。AGM利用异常检测和自注意力方法,将微弱的异常信号与全局上下文信息整合到训练过程中。此外,我们还设置了一个迭代细化阶段,以引导模型更多地关注潜在病变,同时抑制不太相关的区域。我们使用两个公共数据集和一个具有挑战性的私有数据集来验证我们模型的性能。实验结果表明,我们的方法在OCT图像病变分割的WSSS中达到了新的最优性能。