Suppr超能文献

相似文献

1
Evaluation of mediastinal lymph node segmentation of heterogeneous CT data with full and weak supervision.
Comput Med Imaging Graph. 2024 Jan;111:102312. doi: 10.1016/j.compmedimag.2023.102312. Epub 2023 Dec 15.
2
Deep Reinforcement Learning for Weakly-Supervised Lymph Node Segmentation in CT Images.
IEEE J Biomed Health Inform. 2021 Mar;25(3):774-783. doi: 10.1109/JBHI.2020.3008759. Epub 2021 Mar 5.
5
Computer-aided lymph node segmentation in volumetric CT data.
Med Phys. 2012 Sep;39(9):5419-28. doi: 10.1118/1.4742845.
6
Semi-supervised abdominal multi-organ segmentation by object-redrawing.
Med Phys. 2024 Nov;51(11):8334-8347. doi: 10.1002/mp.17364. Epub 2024 Aug 21.
7
Automatic medical imaging segmentation via self-supervising large-scale convolutional neural networks.
Radiother Oncol. 2025 Mar;204:110711. doi: 10.1016/j.radonc.2025.110711. Epub 2025 Jan 9.
9
Learning fuzzy clustering for SPECT/CT segmentation via convolutional neural networks.
Med Phys. 2021 Jul;48(7):3860-3877. doi: 10.1002/mp.14903. Epub 2021 May 28.
10
Semantic segmentation and detection of mediastinal lymph nodes and anatomical structures in CT data for lung cancer staging.
Int J Comput Assist Radiol Surg. 2019 Jun;14(6):977-986. doi: 10.1007/s11548-019-01948-8. Epub 2019 Mar 19.

引用本文的文献

2
Segmentation of mediastinal lymph nodes in CT with anatomical priors.
Int J Comput Assist Radiol Surg. 2024 Aug;19(8):1537-1544. doi: 10.1007/s11548-024-03165-4. Epub 2024 May 13.

本文引用的文献

1
DiSegNet: A deep dilated convolutional encoder-decoder architecture for lymph node segmentation on PET/CT images.
Comput Med Imaging Graph. 2021 Mar;88:101851. doi: 10.1016/j.compmedimag.2020.101851. Epub 2020 Dec 29.
2
The reliability of a deep learning model in clinical out-of-distribution MRI data: A multicohort study.
Med Image Anal. 2020 Dec;66:101714. doi: 10.1016/j.media.2020.101714. Epub 2020 May 1.
3
Deep Reinforcement Learning for Weakly-Supervised Lymph Node Segmentation in CT Images.
IEEE J Biomed Health Inform. 2021 Mar;25(3):774-783. doi: 10.1109/JBHI.2020.3008759. Epub 2021 Mar 5.
4
Confidence Calibration and Predictive Uncertainty Estimation for Deep Medical Image Segmentation.
IEEE Trans Med Imaging. 2020 Dec;39(12):3868-3878. doi: 10.1109/TMI.2020.3006437. Epub 2020 Nov 30.
5
Standardized Assessment of Automatic Segmentation of White Matter Hyperintensities and Results of the WMH Segmentation Challenge.
IEEE Trans Med Imaging. 2019 Nov;38(11):2556-2568. doi: 10.1109/TMI.2019.2905770. Epub 2019 Mar 19.
6
Constrained-CNN losses for weakly supervised segmentation.
Med Image Anal. 2019 May;54:88-99. doi: 10.1016/j.media.2019.02.009. Epub 2019 Feb 13.
7
Deep learning for healthcare: review, opportunities and challenges.
Brief Bioinform. 2018 Nov 27;19(6):1236-1246. doi: 10.1093/bib/bbx044.
8
DeepCut: Object Segmentation From Bounding Box Annotations Using Convolutional Neural Networks.
IEEE Trans Med Imaging. 2017 Feb;36(2):674-683. doi: 10.1109/TMI.2016.2621185. Epub 2016 Nov 9.
9
A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations.
Med Image Comput Comput Assist Interv. 2014;17(Pt 1):520-7. doi: 10.1007/978-3-319-10404-1_65.
10
The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository.
J Digit Imaging. 2013 Dec;26(6):1045-57. doi: 10.1007/s10278-013-9622-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验