Suppr超能文献

随机森林分类器有助于在 DEXA 研究中检测偶发性成骨骨转移。

Random forest classifiers aid in the detection of incidental osteoblastic osseous metastases in DEXA studies.

机构信息

Department of Radiology, University of Pennsylvania, 3737 Market Street, Philadelphia, PA, 19104, USA.

Department of Orthopedic Surgery, University of Pennsylvania, 3737 Market Street, Philadelphia, PA, 19104, USA.

出版信息

Int J Comput Assist Radiol Surg. 2019 May;14(5):903-909. doi: 10.1007/s11548-019-01933-1. Epub 2019 Mar 9.

Abstract

PURPOSE

Dual-energy X-ray absorptiometry (DEXA) studies are used for screening patients for low bone mineral density (BMD). Patients with breast and prostate cancer are often treated with hormone-altering drugs that result in low BMD. These patients may have incidental osteoblastic metastases of the spine that may be detected on screening DEXA studies. The aim of this pilot study is to assess whether random forest classifiers or support vector machines can identify patients with incidental osteoblastic metastases of the spine from screening DEXA studies and to evaluate which technique is better.

METHODS

We retrospectively reviewed the DEXA studies from 200 patients (155 normal control patients and 45 patients with osteoblastic metastases of one or more lumbar vertebral bodies from L1 to L4). The dataset was split into training (80%) and validation (20%) datasets. The optimal random forest (RF) and support vector machine (SVM) classifiers were obtained. Receiver-operator-characteristic curves were compared with DeLong's test.

RESULTS

The sensitivity, specificity, accuracy and area under the curve (AUC) of the optimal RF classifier were 77.8%, 100.0%, 98.0% and 0.889, respectively, in the validation dataset. The sensitivity, specificity, accuracy and AUC of the optimal SVM classifier were 33.3%, 96.8%, 82.5% and 0.651 in the validation dataset. The RF classifier was significantly better than the SVM classifier (P = 0.008). Only 7 of the 45 patients with osteoblastic metastases (15.6%) were prospectively identified by the radiologist interpreting the study.

CONCLUSIONS

RF classifiers can be used as a useful adjunct to identify incidental lumbar spine osteoblastic metastases in screening DEXA studies.

摘要

目的

双能 X 射线吸收法(DEXA)研究用于筛选低骨密度(BMD)患者。患有乳腺癌和前列腺癌的患者通常接受激素改变药物治疗,导致低 BMD。这些患者可能会偶然发生脊柱成骨性转移,这可能会在筛查 DEXA 研究中被发现。本研究旨在评估随机森林分类器或支持向量机是否可以从筛查 DEXA 研究中识别出患有脊柱偶然成骨性转移的患者,并评估哪种技术更好。

方法

我们回顾性分析了 200 例患者(155 例正常对照组患者和 45 例从 L1 到 L4 的一个或多个腰椎成骨性转移患者)的 DEXA 研究。数据集分为训练(80%)和验证(20%)数据集。获得最佳随机森林(RF)和支持向量机(SVM)分类器。比较了接收者操作特征曲线与 DeLong 的检验。

结果

最佳 RF 分类器在验证数据集中的敏感性、特异性、准确性和曲线下面积(AUC)分别为 77.8%、100.0%、98.0%和 0.889。最佳 SVM 分类器在验证数据集中的敏感性、特异性、准确性和 AUC 分别为 33.3%、96.8%、82.5%和 0.651。RF 分类器明显优于 SVM 分类器(P=0.008)。只有 45 例成骨性转移患者中的 7 例(15.6%)被解读研究的放射科医生前瞻性识别。

结论

RF 分类器可作为一种有用的辅助手段,用于识别筛查 DEXA 研究中的偶然性腰椎成骨性转移。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验