Suppr超能文献

小胶质细胞衍生的脂囊泡是治疗缺血性中风的潜在靶点。

Microglia-Derived Adiposomes are Potential Targets for the Treatment of Ischemic Stroke.

机构信息

Department of Medical Research, MacKay Memorial Hospital, New Taipei City, Taiwan.

Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan City, Taiwan.

出版信息

Cell Mol Neurobiol. 2019 Jul;39(5):591-604. doi: 10.1007/s10571-019-00665-9. Epub 2019 Mar 9.

Abstract

It is known that cerebral ischemia can cause brain inflammation and adiposome can serve as a depot of inflammatory mediators. In the study, the pro-inflammatory and pro-death role of adiposome in ischemic microglia and ischemic brain was newly investigated. The contribution of PPARγ to adiposome formation was also evaluated for the first time in ischemic microglia. Focal cerebral ischemia/reperfusion (I/R) animal model and the in vitro glucose-oxygen-serum deprivation (GOSD) cell model were both applied in the study. GOSD- or I/R-induced adiposome formation, inflammatory activity, cell death of microglia, and brain infarction were, respectively, determined, in the absence or presence of NS-398 (adiposome inhibitor) or GW9662 (PPARγ antagonist). GOSD-increased adiposome formation played a critical role in stimulating the inflammatory activity (production of TNF-α and IL-1β) and cell death of microglia. Similar results were also found in ischemic brain tissues. GOSD-induced PPARγ partially contributed to the increase of adiposomes and adiposome-mediated inflammatory responses of microglia. Blockade of adiposome formation with NS-398 or GW9662 significantly reduced not only the inflammatory activity and death rate of GOSD-treated microglia but also the brain infarct volume and motor function deficit of ischemic rats. The pathological role of microglia-derived adiposome in cerebral ischemia has been confirmed and attributed to its pro-inflammatory and/or pro-death effect upon ischemic brain cells and tissues. Adiposome and its upstream regulator PPARγ were therefore as potential targets for the treatment of ischemic stroke. Therapeutic values of NS-398 and GW9662 have been suggested.

摘要

已知脑缺血可引起脑炎症,脂肪体可作为炎症介质的储存库。在这项研究中,新研究了脂肪体在缺血性小胶质细胞和缺血性脑中的促炎和促死作用。还首次评估了 PPARγ 在缺血性小胶质细胞中对脂肪体形成的贡献。研究中同时应用了局灶性脑缺血再灌注(I/R)动物模型和体外葡萄糖-氧-血清剥夺(GOSD)细胞模型。分别在不存在或存在 NS-398(脂肪体抑制剂)或 GW9662(PPARγ 拮抗剂)的情况下,测定了 GOSD 或 I/R 诱导的脂肪体形成、小胶质细胞的炎症活性、细胞死亡和脑梗死。GOSD 增加的脂肪体形成在刺激小胶质细胞的炎症活性(TNF-α和 IL-1β的产生)和细胞死亡中起关键作用。在缺血性脑组织中也发现了类似的结果。GOSD 诱导的 PPARγ 部分有助于增加脂肪体和脂肪体介导的小胶质细胞炎症反应。用 NS-398 或 GW9662 阻断脂肪体形成不仅显著降低了 GOSD 处理的小胶质细胞的炎症活性和死亡率,而且还降低了缺血大鼠的脑梗死体积和运动功能缺陷。已经证实了小胶质细胞衍生的脂肪体在脑缺血中的病理作用,并归因于其对缺血性脑细胞和组织的促炎和/或促死亡作用。因此,脂肪体及其上游调节剂 PPARγ 是治疗缺血性中风的潜在靶点。已经提出了 NS-398 和 GW9662 的治疗价值。

相似文献

1
Microglia-Derived Adiposomes are Potential Targets for the Treatment of Ischemic Stroke.
Cell Mol Neurobiol. 2019 Jul;39(5):591-604. doi: 10.1007/s10571-019-00665-9. Epub 2019 Mar 9.
2
Molecular Mechanisms Responsible for Neuron-Derived Conditioned Medium (NCM)-Mediated Protection of Ischemic Brain.
PLoS One. 2016 Jan 8;11(1):e0146692. doi: 10.1371/journal.pone.0146692. eCollection 2016.
9
Telmisartan Protects a Microglia Cell Line from LPS Injury Beyond AT1 Receptor Blockade or PPARγ Activation.
Mol Neurobiol. 2019 May;56(5):3193-3210. doi: 10.1007/s12035-018-1300-9. Epub 2018 Aug 13.
10
Neuronal Interleukin-4 as a Modulator of Microglial Pathways and Ischemic Brain Damage.
J Neurosci. 2015 Aug 12;35(32):11281-91. doi: 10.1523/JNEUROSCI.1685-15.2015.

引用本文的文献

3
Dynamic Brain Lipid Profiles Modulate Microglial Lipid Droplet Accumulation and Inflammation Under Ischemic Conditions in Mice.
Adv Sci (Weinh). 2024 Nov;11(41):e2306863. doi: 10.1002/advs.202306863. Epub 2024 Sep 9.
4
Knockdown of NEAT1 prevents post-stroke lipid droplet agglomeration in microglia by regulating autophagy.
Cell Mol Life Sci. 2024 Jan 12;81(1):30. doi: 10.1007/s00018-023-05045-7.
5
The regulatory role of lipophagy in central nervous system diseases.
Cell Death Discov. 2023 Jul 6;9(1):229. doi: 10.1038/s41420-023-01504-z.
6
Effects of Microglial Activation and Polarization on Brain Injury After Stroke.
Front Neurol. 2021 Jul 1;12:620948. doi: 10.3389/fneur.2021.620948. eCollection 2021.
7
Microglial/Macrophage polarization and function in brain injury and repair after stroke.
CNS Neurosci Ther. 2021 May;27(5):515-527. doi: 10.1111/cns.13620. Epub 2021 Mar 1.
8
Altered lncRNAs Transcriptomic Profiles in Atherosclerosis-Induced Ischemic Stroke.
Cell Mol Neurobiol. 2022 Jan;42(1):265-278. doi: 10.1007/s10571-020-00918-y. Epub 2020 Jul 11.
9
Neuroprotective effects of oleic acid in rodent models of cerebral ischaemia.
Sci Rep. 2019 Jul 24;9(1):10732. doi: 10.1038/s41598-019-47057-z.

本文引用的文献

2
Adipocyte Death and Chronic Inflammation in Obesity.
J Med Invest. 2017;64(3.4):193-196. doi: 10.2152/jmi.64.193.
4
The Role of Lipid Bodies in the Microglial Aging Process and Related Diseases.
Neurochem Res. 2017 Nov;42(11):3140-3148. doi: 10.1007/s11064-017-2351-4. Epub 2017 Jul 11.
5
PPARγ agonists induce adipocyte differentiation by modulating the expression of Lipin-1, which acts as a PPARγ phosphatase.
Int J Biochem Cell Biol. 2016 Dec;81(Pt A):57-66. doi: 10.1016/j.biocel.2016.10.018. Epub 2016 Oct 22.
7
Microenvironmental Control of Adipocyte Fate and Function.
Trends Cell Biol. 2016 Oct;26(10):745-755. doi: 10.1016/j.tcb.2016.05.005. Epub 2016 Jun 4.
8
Molecular Mechanisms Responsible for Neuron-Derived Conditioned Medium (NCM)-Mediated Protection of Ischemic Brain.
PLoS One. 2016 Jan 8;11(1):e0146692. doi: 10.1371/journal.pone.0146692. eCollection 2016.
9
COX2 is involved in hypoxia-induced TNF-α expression in osteoblast.
Sci Rep. 2015 Jun 12;5:10020. doi: 10.1038/srep10020.
10
PPAR-γ activation by Tityus serrulatus venom regulates lipid body formation and lipid mediator production.
Toxicon. 2015 Jan;93:90-7. doi: 10.1016/j.toxicon.2014.11.226. Epub 2014 Nov 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验