Suppr超能文献

能量权衡和低代谢状态促进疾病耐受。

Energetic Trade-Offs and Hypometabolic States Promote Disease Tolerance.

机构信息

Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA.

Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA; Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia.

出版信息

Cell. 2019 Apr 4;177(2):399-413.e12. doi: 10.1016/j.cell.2019.01.050. Epub 2019 Mar 7.

Abstract

Host defenses against pathogens are energetically expensive, leading ecological immunologists to postulate that they might participate in energetic trade-offs with other maintenance programs. However, the metabolic costs of immunity and the nature of physiologic trade-offs it engages are largely unknown. We report here that activation of immunity causes an energetic trade-off with the homeothermy (the stable maintenance of core temperature), resulting in hypometabolism and hypothermia. This immunity-induced physiologic trade-off was independent of sickness behaviors but required hematopoietic sensing of lipopolysaccharide (LPS) via the toll-like receptor 4 (TLR4). Metabolomics and genome-wide expression profiling revealed that distinct metabolic programs supported entry and recovery from the energy-conserving hypometabolic state. During bacterial infections, hypometabolic states, which could be elicited by competition for energy between maintenance programs or energy restriction, promoted disease tolerance. Together, our findings suggest that energy-conserving hypometabolic states, such as dormancy, might have evolved as a mechanism of tissue tolerance.

摘要

宿主防御病原体的能力需要消耗大量能量,这使得生态免疫学家推测,宿主可能会在能量层面与其他维持程序进行权衡。然而,免疫的代谢成本以及它所涉及的生理权衡的性质在很大程度上仍是未知的。我们在这里报告称,免疫的激活会导致与体温调节(核心温度的稳定维持)的能量权衡,从而导致代谢率降低和体温降低。这种免疫诱导的生理权衡与疾病行为无关,但需要通过 Toll 样受体 4(TLR4)感知造血细胞对脂多糖(LPS)的反应。代谢组学和全基因组表达谱分析显示,不同的代谢程序支持进入和从节能低代谢状态中恢复。在细菌感染期间,低代谢状态(可能是由于维持程序或能量限制之间的能量竞争引起的)可以促进疾病耐受。总之,我们的发现表明,节能低代谢状态,如休眠,可能是作为组织耐受的一种机制而进化出来的。

相似文献

1
Energetic Trade-Offs and Hypometabolic States Promote Disease Tolerance.能量权衡和低代谢状态促进疾病耐受。
Cell. 2019 Apr 4;177(2):399-413.e12. doi: 10.1016/j.cell.2019.01.050. Epub 2019 Mar 7.
3
Does hypometabolism constrain innate immune defense?代谢低下是否会限制先天免疫防御?
Acta Physiol (Oxf). 2024 Mar;240(3):e14091. doi: 10.1111/apha.14091. Epub 2024 Jan 30.
6
Energy conservation and sleep.能量守恒与睡眠。
Behav Brain Res. 1995 Jul-Aug;69(1-2):65-73. doi: 10.1016/0166-4328(95)00002-b.
10
Energetic costs and benefits of sleep.睡眠的能量成本和收益。
Curr Biol. 2022 Jun 20;32(12):R656-R661. doi: 10.1016/j.cub.2022.04.004.

引用本文的文献

10
Inhibition of the nucleolar RNA exosome facilitates adaptation to starvation.抑制核仁RNA外切体有助于适应饥饿。
PLoS Biol. 2025 May 21;23(5):e3003190. doi: 10.1371/journal.pbio.3003190. eCollection 2025 May.

本文引用的文献

6
Warming the mouse to model human diseases.使小鼠升温以模拟人类疾病。
Nat Rev Endocrinol. 2017 Aug;13(8):458-465. doi: 10.1038/nrendo.2017.48. Epub 2017 May 12.
8
Disease tolerance and immunity in host protection against infection.宿主抗感染的疾病耐受力和免疫。
Nat Rev Immunol. 2017 Feb;17(2):83-96. doi: 10.1038/nri.2016.136. Epub 2017 Jan 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验