NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.
Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, C/ Feixa Llarga s/n 08907, Hospitalet de Llobregat, Spain.
Int J Pharm. 2019 May 1;562:151-161. doi: 10.1016/j.ijpharm.2019.02.043. Epub 2019 Mar 8.
Bone tissue engineering is an emerging medical field that has been developed in recent years to address pathologies with limited ability of bones to regenerate. Here we report the fabrication and characterization of microbial transglutaminase crosslinked gelatin-based scaffolds designed for serving as both cell substrate and growth factor release system. In particular, morphological, biomechanical and biological features have been analyzed. The enzyme ratio applied during the fabrication of the scaffolds affects the swelling capacity and the mechanical properties of the final structure. The developed systems are not cytotoxic according to the biocompatibility tests. The biological performance of selected formulations was studied using L-929 fibroblasts, D1 MSC and MG63 osteoblasts. Moreover, scaffolds allowed efficient osteogenic differentiation and signaling of MSCs. MSC cultured on the scaffolds not only presented lower proliferative and stemness profile, but also increased expression of osteoblast-related genes (Col1a1, Runx2, Osx). Furthermore, the in vitro release kinetics of vascular endothelial growth factor (VEGF) and bone morphogenetic protein -2 (BMP-2) from the scaffolds were also investigated. The release of the growth factors produced from the scaffolds followed a first order kinetics. These results highlight that the scaffolds designed and developed in this work may be suitable candidates for bone tissue regeneration purposes.
骨组织工程是近年来发展起来的一个新兴医学领域,旨在解决骨骼再生能力有限的病理学问题。在这里,我们报告了微生物转谷氨酰胺酶交联明胶基支架的制备和表征,该支架设计用作细胞基质和生长因子释放系统。特别分析了形态、生物力学和生物学特征。在支架制备过程中应用的酶比会影响最终结构的溶胀能力和机械性能。根据生物相容性试验,所开发的系统没有细胞毒性。使用 L-929 成纤维细胞、D1 MSC 和 MG63 成骨细胞研究了选定配方的生物学性能。此外,支架允许成骨细胞的有效分化和 MSC 的信号转导。在支架上培养的 MSC 不仅表现出较低的增殖和干性特征,而且还增加了成骨相关基因(Col1a1、Runx2、Osx)的表达。此外,还研究了支架中血管内皮生长因子 (VEGF) 和骨形态发生蛋白-2 (BMP-2) 的体外释放动力学。支架中释放的生长因子遵循一级动力学。这些结果表明,本工作设计和开发的支架可能是骨组织再生的合适候选物。