基于快速训练的非配对深度跨模态合成
Unpaired Deep Cross-Modality Synthesis with Fast Training.
作者信息
Xiang Lei, Li Yang, Lin Weili, Wang Qian, Shen Dinggang
机构信息
Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
出版信息
Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2018). 2018 Sep;11045:155-164. doi: 10.1007/978-3-030-00889-5_18. Epub 2018 Sep 20.
Cross-modality synthesis can convert the input image of one modality to the output of another modality. It is thus very valuable for both scientific research and clinical applications. Most existing cross-modality synthesis methods require large dataset of paired data for training, while it is often non-trivial to acquire perfectly aligned images of different modalities for the same subject. Even tiny misalignment (i.e., due patient/organ motion) between the cross-modality paired images may place adverse impact to training and corrupt the synthesized images. In this paper, we present a novel method for cross-modality image synthesis by training with the unpaired data. Specifically, we adopt the generative adversarial networks and conduct the fast training in cyclic way. A new structural dissimilarity loss, which captures the detailed anatomies, is introduced to enhance the quality of the synthesized images. We validate our proposed algorithm on three popular image synthesis tasks, including brain MR-to-CT, prostate MR-to-CT, and brain 3T-to-7T. The experimental results demonstrate that our proposed method can achieve good synthesis performance by using the unpaired data only.
跨模态合成可以将一种模态的输入图像转换为另一种模态的输出。因此,它在科学研究和临床应用中都非常有价值。大多数现有的跨模态合成方法需要大量的配对数据进行训练,而对于同一受试者获取不同模态的完美对齐图像通常并非易事。即使跨模态配对图像之间存在微小的未对齐(即由于患者/器官运动)也可能对训练产生不利影响并损坏合成图像。在本文中,我们提出了一种通过使用未配对数据进行训练的跨模态图像合成新方法。具体来说,我们采用生成对抗网络并以循环方式进行快速训练。引入了一种新的结构差异损失,用于捕捉详细的解剖结构,以提高合成图像的质量。我们在三个流行的图像合成任务上验证了我们提出的算法,包括脑磁共振成像到计算机断层扫描、前列腺磁共振成像到计算机断层扫描以及脑3T到7T。实验结果表明,我们提出的方法仅使用未配对数据就能实现良好的合成性能。