Suppr超能文献

基于上下文感知生成对抗网络的医学图像合成

Medical Image Synthesis with Context-Aware Generative Adversarial Networks.

作者信息

Nie Dong, Trullo Roger, Lian Jun, Petitjean Caroline, Ruan Su, Wang Qian, Shen Dinggang

机构信息

Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, USA.

Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, USA.

出版信息

Med Image Comput Comput Assist Interv. 2017 Sep;10435:417-425. doi: 10.1007/978-3-319-66179-7_48. Epub 2017 Sep 4.

Abstract

Computed tomography (CT) is critical for various clinical applications, e.g., radiation treatment planning and also PET attenuation correction in MRI/PET scanner. However, CT exposes radiation during acquisition, which may cause side effects to patients. Compared to CT, magnetic resonance imaging (MRI) is much safer and does not involve radiations. Therefore, recently researchers are greatly motivated to estimate CT image from its corresponding MR image of the same subject for the case of radiation planning. In this paper, we propose a data-driven approach to address this challenging problem. Specifically, we train a fully convolutional network (FCN) to generate CT given the MR image. To better model the nonlinear mapping from MRI to CT and produce more realistic images, we propose to use the adversarial training strategy to train the FCN. Moreover, we propose an image-gradient-difference based loss function to alleviate the blurriness of the generated CT. We further apply Auto-Context Model (ACM) to implement a context-aware generative adversarial network. Experimental results show that our method is accurate and robust for predicting CT images from MR images, and also outperforms three state-of-the-art methods under comparison.

摘要

计算机断层扫描(CT)在各种临床应用中至关重要,例如放射治疗计划以及MRI/PET扫描仪中的PET衰减校正。然而,CT在采集过程中会暴露辐射,这可能会给患者带来副作用。与CT相比,磁共振成像(MRI)要安全得多,且不涉及辐射。因此,最近在放射治疗计划的情况下,研究人员非常有动力从同一受试者的相应MR图像估计CT图像。在本文中,我们提出了一种数据驱动的方法来解决这个具有挑战性的问题。具体来说,我们训练一个全卷积网络(FCN)来根据MR图像生成CT。为了更好地对从MRI到CT的非线性映射进行建模并生成更逼真的图像,我们建议使用对抗训练策略来训练FCN。此外,我们提出了一种基于图像梯度差的损失函数来减轻生成的CT的模糊性。我们进一步应用自动上下文模型(ACM)来实现上下文感知生成对抗网络。实验结果表明,我们的方法在从MR图像预测CT图像方面准确且稳健,并且在比较中也优于三种现有技术方法。

相似文献

1
Medical Image Synthesis with Context-Aware Generative Adversarial Networks.基于上下文感知生成对抗网络的医学图像合成
Med Image Comput Comput Assist Interv. 2017 Sep;10435:417-425. doi: 10.1007/978-3-319-66179-7_48. Epub 2017 Sep 4.
2
Medical Image Synthesis with Deep Convolutional Adversarial Networks.基于深度卷积对抗网络的医学图像合成。
IEEE Trans Biomed Eng. 2018 Dec;65(12):2720-2730. doi: 10.1109/TBME.2018.2814538. Epub 2018 Mar 9.
3
Estimating CT Image from MRI Data Using 3D Fully Convolutional Networks.使用3D全卷积网络从MRI数据估计CT图像。
Deep Learn Data Label Med Appl (2016). 2016;2016:170-178. doi: 10.1007/978-3-319-46976-8_18. Epub 2016 Sep 27.
5
Deep learning for whole-body medical image generation.深度学习在全身医学图像生成中的应用。
Eur J Nucl Med Mol Imaging. 2021 Nov;48(12):3817-3826. doi: 10.1007/s00259-021-05413-0. Epub 2021 May 22.

引用本文的文献

8
CT synthesis with deep learning for MR-only radiotherapy planning: a review.基于深度学习的CT合成用于仅磁共振放疗计划:综述
Biomed Eng Lett. 2024 Sep 26;14(6):1259-1278. doi: 10.1007/s13534-024-00430-y. eCollection 2024 Nov.

本文引用的文献

1
Deep Learning in Medical Image Analysis.医学图像分析中的深度学习
Annu Rev Biomed Eng. 2017 Jun 21;19:221-248. doi: 10.1146/annurev-bioeng-071516-044442. Epub 2017 Mar 9.
3
Image Super-Resolution Using Deep Convolutional Networks.基于深度卷积网络的图像超分辨率重建。
IEEE Trans Pattern Anal Mach Intell. 2016 Feb;38(2):295-307. doi: 10.1109/TPAMI.2015.2439281.
5
IMPROVING MAGNETIC RESONANCE RESOLUTION WITH SUPERVISED LEARNING.利用监督学习提高磁共振分辨率
Proc IEEE Int Symp Biomed Imaging. 2014;2014:987-990. doi: 10.1109/ISBI.2014.6868038.
10
Diffeomorphic demons: efficient non-parametric image registration.微分同胚恶魔算法:高效的非参数图像配准
Neuroimage. 2009 Mar;45(1 Suppl):S61-72. doi: 10.1016/j.neuroimage.2008.10.040. Epub 2008 Nov 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验