Suppr超能文献

使用图像类比的相关显微镜多模态配准。

Multi-modal registration for correlative microscopy using image analogies.

作者信息

Cao Tian, Zach Christopher, Modla Shannon, Powell Debbie, Czymmek Kirk, Niethammer Marc

机构信息

Department of Computer Science, University of North Carolina at Chapel Hill, United States.

Microsoft Research, Cambridge, United Kingdom.

出版信息

Med Image Anal. 2014 Aug;18(6):914-26. doi: 10.1016/j.media.2013.12.005. Epub 2013 Dec 18.

Abstract

Correlative microscopy is a methodology combining the functionality of light microscopy with the high resolution of electron microscopy and other microscopy technologies for the same biological specimen. In this paper, we propose an image registration method for correlative microscopy, which is challenging due to the distinct appearance of biological structures when imaged with different modalities. Our method is based on image analogies and allows to transform images of a given modality into the appearance-space of another modality. Hence, the registration between two different types of microscopy images can be transformed to a mono-modality image registration. We use a sparse representation model to obtain image analogies. The method makes use of corresponding image training patches of two different imaging modalities to learn a dictionary capturing appearance relations. We test our approach on backscattered electron (BSE) scanning electron microscopy (SEM)/confocal and transmission electron microscopy (TEM)/confocal images. We perform rigid, affine, and deformable registration via B-splines and show improvements over direct registration using both mutual information and sum of squared differences similarity measures to account for differences in image appearance.

摘要

相关显微镜检查是一种将光学显微镜的功能与电子显微镜和其他显微镜技术对同一生物样本的高分辨率相结合的方法。在本文中,我们提出了一种用于相关显微镜检查的图像配准方法,由于用不同模态成像时生物结构的外观不同,该方法具有挑战性。我们的方法基于图像类比,允许将给定模态的图像转换为另一种模态的外观空间。因此,两种不同类型显微镜图像之间的配准可以转换为单模态图像配准。我们使用稀疏表示模型来获得图像类比。该方法利用两种不同成像模态的相应图像训练块来学习一个捕捉外观关系的字典。我们在背散射电子(BSE)扫描电子显微镜(SEM)/共聚焦和透射电子显微镜(TEM)/共聚焦图像上测试了我们的方法。我们通过B样条执行刚性、仿射和可变形配准,并显示出相对于使用互信息和平方差之和相似性度量进行直接配准的改进,以考虑图像外观的差异。

相似文献

1
Multi-modal registration for correlative microscopy using image analogies.
Med Image Anal. 2014 Aug;18(6):914-26. doi: 10.1016/j.media.2013.12.005. Epub 2013 Dec 18.
2
Image synthesis-based multi-modal image registration framework by using deep fully convolutional networks.
Med Biol Eng Comput. 2019 May;57(5):1037-1048. doi: 10.1007/s11517-018-1924-y. Epub 2018 Dec 7.
3
MIND: modality independent neighbourhood descriptor for multi-modal deformable registration.
Med Image Anal. 2012 Oct;16(7):1423-35. doi: 10.1016/j.media.2012.05.008. Epub 2012 May 31.
4
Improving accuracy and efficiency of mutual information for multi-modal retinal image registration using adaptive probability density estimation.
Comput Med Imaging Graph. 2013 Oct-Dec;37(7-8):597-606. doi: 10.1016/j.compmedimag.2013.08.004. Epub 2013 Aug 30.
5
Multi-modal robust inverse-consistent linear registration.
Hum Brain Mapp. 2015 Apr;36(4):1365-80. doi: 10.1002/hbm.22707. Epub 2014 Dec 2.
6
Robust multimodal dictionary learning.
Med Image Comput Comput Assist Interv. 2013;16(Pt 1):259-66. doi: 10.1007/978-3-642-40811-3_33.
7
A robust solution to multi-modal image registration by combining mutual information with multi-scale derivatives.
Med Image Comput Comput Assist Interv. 2009;12(Pt 1):616-23. doi: 10.1007/978-3-642-04268-3_76.
8
9
Cross contrast multi-channel image registration using image synthesis for MR brain images.
Med Image Anal. 2017 Feb;36:2-14. doi: 10.1016/j.media.2016.10.005. Epub 2016 Oct 22.
10
Manifold-based feature point matching for multi-modal image registration.
Int J Med Robot. 2013 Mar;9(1):e10-8. doi: 10.1002/rcs.1465. Epub 2012 Nov 22.

引用本文的文献

1
Correlative Imaging to Detect Rare HIV Reservoirs and Associated Damage in Tissues.
Methods Mol Biol. 2024;2807:93-110. doi: 10.1007/978-1-0716-3862-0_7.
2
Unpaired Deep Cross-Modality Synthesis with Fast Training.
Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2018). 2018 Sep;11045:155-164. doi: 10.1007/978-3-030-00889-5_18. Epub 2018 Sep 20.
3
Registration of Pathological Images.
Simul Synth Med Imaging. 2016 Oct;9968:97-107. doi: 10.1007/978-3-319-46630-9_10. Epub 2016 Sep 23.
4
Brain lesion segmentation through image synthesis and outlier detection.
Neuroimage Clin. 2017 Sep 8;16:643-658. doi: 10.1016/j.nicl.2017.09.003. eCollection 2017.
5
Quicksilver: Fast predictive image registration - A deep learning approach.
Neuroimage. 2017 Sep;158:378-396. doi: 10.1016/j.neuroimage.2017.07.008. Epub 2017 Jul 11.
6
Subject-Specific Sparse Dictionary Learning for Atlas-Based Brain MRI Segmentation.
IEEE J Biomed Health Inform. 2015 Sep;19(5):1598-609. doi: 10.1109/JBHI.2015.2439242.
7
Subject Specific Sparse Dictionary Learning for Atlas based Brain MRI Segmentation.
Mach Learn Med Imaging. 2014;8679:248-255. doi: 10.1007/978-3-319-10581-9_31.
8
MR to CT Registration of Brains using Image Synthesis.
Proc SPIE Int Soc Opt Eng. 2014 Mar 21;9034. doi: spie.org/Publications/Proceedings/Paper/10.1117/12.2043954.
9
Robust multimodal dictionary learning.
Med Image Comput Comput Assist Interv. 2013;16(Pt 1):259-66. doi: 10.1007/978-3-642-40811-3_33.

本文引用的文献

1
Robust multimodal dictionary learning.
Med Image Comput Comput Assist Interv. 2013;16(Pt 1):259-66. doi: 10.1007/978-3-642-40811-3_33.
2
Towards robust deconvolution of low-dose perfusion CT: sparse perfusion deconvolution using online dictionary learning.
Med Image Anal. 2013 May;17(4):417-28. doi: 10.1016/j.media.2013.02.005. Epub 2013 Mar 7.
3
Deformable segmentation via sparse representation and dictionary learning.
Med Image Anal. 2012 Oct;16(7):1385-96. doi: 10.1016/j.media.2012.07.007. Epub 2012 Aug 23.
4
Towards robust and effective shape modeling: sparse shape composition.
Med Image Anal. 2012 Jan;16(1):265-77. doi: 10.1016/j.media.2011.08.004. Epub 2011 Sep 5.
5
The power of correlative microscopy: multi-modal, multi-scale, multi-dimensional.
Curr Opin Struct Biol. 2011 Oct;21(5):686-93. doi: 10.1016/j.sbi.2011.06.010. Epub 2011 Jul 21.
6
A compressed sensing approach for MR tissue contrast synthesis.
Inf Process Med Imaging. 2011;22:371-83. doi: 10.1007/978-3-642-22092-0_31.
7
Efficient MR image reconstruction for compressed MR imaging.
Med Image Anal. 2011 Oct;15(5):670-9. doi: 10.1016/j.media.2011.06.001. Epub 2011 Jun 24.
8
High accuracy FIONA-AFM hybrid imaging.
Ultramicroscopy. 2011 Apr;111(5):350-5. doi: 10.1016/j.ultramic.2011.01.020. Epub 2011 Jan 19.
9
Image super-resolution via sparse representation.
IEEE Trans Image Process. 2010 Nov;19(11):2861-73. doi: 10.1109/TIP.2010.2050625. Epub 2010 May 18.
10
elastix: a toolbox for intensity-based medical image registration.
IEEE Trans Med Imaging. 2010 Jan;29(1):196-205. doi: 10.1109/TMI.2009.2035616. Epub 2009 Nov 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验