Cao Tian, Zach Christopher, Modla Shannon, Powell Debbie, Czymmek Kirk, Niethammer Marc
Department of Computer Science, University of North Carolina at Chapel Hill, United States.
Microsoft Research, Cambridge, United Kingdom.
Med Image Anal. 2014 Aug;18(6):914-26. doi: 10.1016/j.media.2013.12.005. Epub 2013 Dec 18.
Correlative microscopy is a methodology combining the functionality of light microscopy with the high resolution of electron microscopy and other microscopy technologies for the same biological specimen. In this paper, we propose an image registration method for correlative microscopy, which is challenging due to the distinct appearance of biological structures when imaged with different modalities. Our method is based on image analogies and allows to transform images of a given modality into the appearance-space of another modality. Hence, the registration between two different types of microscopy images can be transformed to a mono-modality image registration. We use a sparse representation model to obtain image analogies. The method makes use of corresponding image training patches of two different imaging modalities to learn a dictionary capturing appearance relations. We test our approach on backscattered electron (BSE) scanning electron microscopy (SEM)/confocal and transmission electron microscopy (TEM)/confocal images. We perform rigid, affine, and deformable registration via B-splines and show improvements over direct registration using both mutual information and sum of squared differences similarity measures to account for differences in image appearance.
相关显微镜检查是一种将光学显微镜的功能与电子显微镜和其他显微镜技术对同一生物样本的高分辨率相结合的方法。在本文中,我们提出了一种用于相关显微镜检查的图像配准方法,由于用不同模态成像时生物结构的外观不同,该方法具有挑战性。我们的方法基于图像类比,允许将给定模态的图像转换为另一种模态的外观空间。因此,两种不同类型显微镜图像之间的配准可以转换为单模态图像配准。我们使用稀疏表示模型来获得图像类比。该方法利用两种不同成像模态的相应图像训练块来学习一个捕捉外观关系的字典。我们在背散射电子(BSE)扫描电子显微镜(SEM)/共聚焦和透射电子显微镜(TEM)/共聚焦图像上测试了我们的方法。我们通过B样条执行刚性、仿射和可变形配准,并显示出相对于使用互信息和平方差之和相似性度量进行直接配准的改进,以考虑图像外观的差异。