Suppr超能文献

基于监测的尖峰循环网络,用于表示复杂动态模式。

Monitor-Based Spiking Recurrent Network for the Representation of Complex Dynamic Patterns.

机构信息

School of Physics and Technology, Wuhan University, Wuhan 430072 Hubei, P. R. China.

出版信息

Int J Neural Syst. 2019 Oct;29(8):1950006. doi: 10.1142/S0129065719500060. Epub 2019 Feb 8.

Abstract

Neural networks are powerful computation tools for mimicking the human brain to solve realistic problems. Since spiking neural networks are a type of brain-inspired network, called the novel spiking system, Monitor-based Spiking Recurrent network (MbSRN), is derived to learn and represent patterns in this paper. This network provides a computational framework for memorizing the targets using a simple dynamic model that maintains biological plasticity. Based on a recurrent reservoir, the MbSRN presents a mechanism called a 'monitor' to track the components of the state space in the training stage online and to self-sustain the complex dynamics in the testing stage. The network firing spikes are optimized to represent the target dynamics according to the accumulation of the membrane potentials of the units. Stability analysis of the monitor conducted by limiting the coefficient penalty in the loss function verifies that our network has good anti-interference performance under neuron loss and noise. The results of solving some realistic tasks show that the MbSRN not only achieves a high goodness-of-fit of the target patterns but also maintains good spiking efficiency and storage capacity.

摘要

神经网络是一种强大的计算工具,可模拟人脑解决实际问题。由于尖峰神经网络是一种受大脑启发的网络,因此称为新型尖峰系统,本文从中衍生出基于监视器的尖峰递归网络(MbSRN),用于学习和表示模式。该网络提供了一个计算框架,使用简单的动态模型来记忆目标,该模型保持生物可变性。基于递归储层,MbSRN 提出了一种称为“监视器”的机制,用于在线跟踪训练阶段状态空间的分量,并在测试阶段自维持复杂动态。根据单元的膜电位累积,优化网络的发射尖峰以表示目标动态。通过限制损失函数中的系数惩罚来进行监视器的稳定性分析,验证了我们的网络在神经元丢失和噪声下具有良好的抗干扰性能。解决一些实际任务的结果表明,MbSRN 不仅实现了目标模式的高拟合度,而且保持了良好的尖峰效率和存储容量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验